• Title/Summary/Keyword: Air-Gap Sensor

Search Result 64, Processing Time 0.028 seconds

Development of Inter-Turn Short Circuits Sensor for Field Winding of Synchronous Generator

  • Nam J-H;Jeon Y-S;Choe G-H;Lee S-H;Jeong S-Y;Yoo B-Y;Ju Y-H;Lee Y-J;Shin W-S
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.56-59
    • /
    • 2001
  • An effective method of detecting inter-turn short circuits on round rotor windings is described. Shorted-turns can have significant effects on a generator and its performance. A method of detecting inter-turn short circuits on rotor windings is described. The approach used is to measure the rate of change of the air-gap flux density wave when the rotor is at operating speed and excitation is applied to the field winding. The inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a inter-turn short circuits test was performed at the West-Inchon combined cycle power plant on gas turbine generator and steam turbine generator. This sensor will be used as a detecting of shorted-turn for field winding of synchronous generator. The purpose of this paper is to describe the design and operation of a sensitive inter-turn short circuits detector. In this paper, development of inter-turn short circuits sensor for field winding of synchronous generator and application in a field.

  • PDF

Optimal Angle Error Reduction of Magnetic Position Sensor by 3D Finite Element Method

  • Kim, Ki-Chan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic position sensor using hall effect elements. The angle detection simulation for the magnetic position sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from permanent magnet in the air-gap in the vicinity of hall effect elements. For the Taguchi method, three design parameters related to position of hall effect elements and shape of back yoke are selected. The characteristics of optimal magnetic position sensor are compared with those of original one in terms of simulation as well as experiment. Finally, the performances of the motor adopting original model and optimal model are represented for the purpose of verification of motor performance due to signals from magnetic position sensor.

A Study on the Active Control of Air Bearing (공기베어링의 능동제어에 관한 연구)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.

Development of Inter-Turn Short Circuits Sensor for Rotor Winding of Synchronous Generator (발전기 회전자의 층간단락 감지기 개발)

  • Nam, Jong-Ha;Lee, Seung-Hak;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.307-312
    • /
    • 2002
  • Inter-turn short circuits can have significant effects on a generator and its performance. The Inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted- turn test was performed at the Seoinchon combined cycle power plant on gas turbine generator and stim turbine generator. This sensor will be used as a detecting of Inter-turn short circuits for synchronous generator's field winding.

Modelling of a Ring-type Multi-pole Inductive Position Sensor Using Magnetic Circuit Theory (자기회로 이론을 이용한 링형 다극 유도형 변위센서의 모델링)

  • 김지미;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.

  • PDF

Energy Harvester on a Ship Propulsion Shaft for Wireless Sensor System Applications (무선센서 시스템 응용을 위한 선박 추진 축계용 에너지 하베스터)

  • Van Ai Hoang;Young Chul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.96-101
    • /
    • 2023
  • In this work, an energy harvester (EH) on the rotating shaft has been proposed for a wireless sensor system (WSS) applications. The EH was designed and implemented to the shaft with a diameter of 20 cm to continuously power a wireless sensor system (WSS). The rotor has coils wound in pairs on seven U-shaped cores attached to the shaft. The stator consists of eight pairs of magnets attached to eight I-cores and they are fixed to an outer fixture. The generated power of the EH was investigated as function of the air gap between the rotor and stator, the number of turn of coils, and shaft speed. The fabricated EH produced power up to 2.87 W at 300 rpm and the 3 mm air gap.

Development of Shorted Turn Sensor for Generator Rotor (발전기 회전자 층간단락 감지기 국산화 개발)

  • Lee, Young-Jun;Kim, Hee-Dong;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.195-197
    • /
    • 2001
  • The shorted-turn sensor for generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted-turn test was performed at the Seoinchon & Sininchon combined cycle power plant on gas turbine generator. This sensor will be used as a detecting of shorted-turn for generator's field winding.

  • PDF

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.