• 제목/요약/키워드: Air-Coupled Ultrasound

검색결과 10건 처리시간 0.023초

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Influence of Resin-Infiltrated Time on Wood Natural Materials Using Conventional/Air-Coupled Ultrasound Waves

  • Park, Je-Woong;Kim, Do-Jung;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David K.;Kim, Sun-Kyu;Yang, In-Young
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.235-241
    • /
    • 2009
  • Composite wood materials are very sensitive to water and inspection without any coupling medium of a liquid is really needed to wood materials due to the permeation of coupling medium such as water. However, air-coupled ultrasound has obvious advantages over water-coupled experimentation compared with conventional C-scanner. In this work, it is desirable to perform contact-less nondestructive evaluation to assess wood material homogeneity. A wood material was nondestructively characterized with non-contact and contact modes to measure ultrasonic velocity using automated data acquisition software. We have utilized a proposed peak-delay measurement method. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. The variation of ultrasonic velocity was found to be somewhat difference due to air-coupled limitations over conventional scan images. However, conventional C-scan images are well agreed with increasing the resin-infiltrated time as expected. Finally, we have developed a measurement system of an ultrasonic velocity based on data acquisition software for obtaining ultrasonic quantitative data for correlation with C-scan images.

결함 화상화를 통한 NAUT 특성평가 연구 (The Research on NAUT Characteristics Evaluation by Defection Image)

  • 나선영;김재열
    • Tribology and Lubricants
    • /
    • 제26권6호
    • /
    • pp.341-345
    • /
    • 2010
  • The NAUT(Non contact Air coupled Ultrasonic Testing) is one of the ultrasonic wave inspection methods. It compensates High power ultrasound Pulser Receiver, pre-amp, air probe of high sensitivity in air to generate loss energy by NAUT methods. Generally, in case of ultrasound inspection, it applies contact methods by using couplant. However it can inspect of UT without couplant by this NAUT. The ultrasound transmission reception is composed in stable condition in NAUT. It can inspect high low material or the specimen of rough part, the narrow spot, too. The spot welding is applying the inosculation of automobile component, car body, all boards. The CFRP is necessity of NDE because of the solidity changes material according to lamella tearing. Therefore it checked on realization whether and commercialization in the spot welding and CFRP inspection that the NAUT would be applied them.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

  • Kim, Do-Youn;Cho, Youn-Ho;Lee, Joon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.546-551
    • /
    • 2010
  • The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were used to estimate the size and location of wall thinning.

Development of a Spherically Focused Capacitive-film Air-coupled Ultrasonic Transducer

  • Song, Jun-Ho;Chimenti Dale E.
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.446-450
    • /
    • 2005
  • We have built a spherically focused, not using acoustic mirrors, capacitive micromachined air-coupled ultrasonic transducer. A flexible backplate of a copper/polyimide backplate is used, permitting it to conform to a spherically shaped substrate. The backplate is patterned with $40-{\mu}m$ depressions having $80-{\mu}m$ center-to-center spacing. A $6-{\mu}m$ thick aluminized Mylar film completing the transducer is deformed to allow it to conform to the spherical backplate. The device's frequency spectrum is centered at 805kHz with -6dB points at 440 and 1210kHz.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가 (Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System)

  • 이준현;이승준;변준형
    • 비파괴검사학회지
    • /
    • 제28권1호
    • /
    • pp.46-53
    • /
    • 2008
  • 복합재료의 내부 결함 평가를 위해 일반적으로 적용되어온 초음파 C-스캔 기법은 섬유자동 배열을 통한 정밀 성형 공정에 적용하기에는 많은 어려움이 있다. 따라서 본 연구는 복합재료의 정밀 성형 공정 중에 발생되는 각종 내부 결함들을 비파괴적, 비접촉으로 평가하기 위한 새로운 하이브리드 초음파 평가 기법을 확립하는데 목적이 있다. 이를 위하여 본 연구에서는 초음파 산란 반사(scattering reflection) 방식을 토대로 한 새로운 이중 피치-캐치(dual pitch-catch) 기법을 확립하여 기존의 결함평가를 위해 시험편의 스캔에 소요되는 시간을 줄이면서 우수한 결함 영상을 얻을 수 있는 새로운 하이브리드 기법을 개발하였다. 즉 두 가지 종류의 열경화성 및 열가소성 복합재료(carbon/epoxy, carbon/PPS) 적층판의 내부 박리(delamination) 결함의 영상화를 위하여 레이저를 이용한 유도 초음파의 발생 및 이중 피치-캐치(pitch-catch)방식을 토대로 한 비접촉식 공기 정합 트랜스듀서(air-coupled transducer)를 이용하여 결함 영상을 얻기 위한 핵심 알고리즘을 확립하였다.

레이저 여기 램파를 이용한 항공기 판재 접합부의 비접촉식 초음파 검사 (Non-Contact Ultrasonic Testing of Aircraft Joints using Laser Generated Lamb Wave)

  • 장경영;김홍준
    • 비파괴검사학회지
    • /
    • 제21권2호
    • /
    • pp.163-168
    • /
    • 2001
  • 접착제와 리벳으로 접합된 항공기 판재의 접합부는 접합 불량, 크랙, 피로 결함이나 부식등에 의해 손상되고 열화될 수 있으며 이런 결함을 전 영역에 걸쳐서 신속하고도 신뢰성 있게 검사하는 것은 항공기 안전을 위해 매우 중요하다. 본 연구에서는 이를 위해 항공기용 알루미늄 판재의 랩 스플라이스 접합 연결부의 접합 품질을 비접촉 방식으로 수행할 수 있는 초음파 비파괴 평가법을 제안한다. 여기서는 레이저를 이용해 램파를 발생시키고 비접촉식 트랜스듀서 (공기정합 용량형 트랜스듀서)를 이용해 피치-캐치 방식으로 검사한다. 레이저 소스로는 Q-스위치된 Nd:YAG 레이저가 이용되며 배열 형태의 직선 슬릿을 갖는 마스크를 이용해 특정 모드의 램파를 발생시켜 이용하였다. 접합부의 한 쪽에서 발생된 레이저 여기 초음파는 판을 따라 전파하여 접합부를 지나 반대편에서 수신되고 수신된 신호의 특성과 접합부의 품질과의 관련성을 조사하였다.

  • PDF

모드 선택성을 강화한 비접촉식 유도초음파 기술 (Non-Contact Guided Wave Technique with Enhanced Mode-Selectivity)

  • 김현묵;이태훈;장경영
    • 비파괴검사학회지
    • /
    • 제24권6호
    • /
    • pp.597-602
    • /
    • 2004
  • 유도초음파의 현장적응에 있어 전파모드를 규명하는 것은 매우 어렵지만 중요한 과제이다. 본 연구에서는 분산성이 적은 단일모드를 발생시키고 검출할 수 있는 기법에 대해 다루고 있으며, 현장 적용성과 자동화를 위해 비접촉식의 기법을 적용하였다. 모드 선택성을 강화한 비접촉식의 유도초음파 기법으로는 선배열 슬릿을 이용한 레이저빔을 이용하였으며, 에어커플 변환기를 수신자로 사용하였다. 선배열의 레이저 조명은 파장과 일치하여 특정한 모드를 발생시킬 수 있다 또한, 에어커플 변환기는 공기 중으로 누설되는 유도초음파를 수신각도를 조절하여 선택적으로 모드를 수신할 수 있다. 1mm 두께의 알루미늄 판에 덕 기법을 적용한 실험결과로부터 제안하는 기법의 유용성을 검증하였고, 특히 단일한 $a_0$모드의 발생 및 수신에 효과적인 기법으로 나타났다.