• Title/Summary/Keyword: Air-Cooled System

Search Result 225, Processing Time 0.03 seconds

A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter (ISG 구동용 인버터의 열유동 해석에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.

Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과)

  • Lee, Chang-Sik;Yoon, Young-Hoon;Kim, Myung-Yoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Fluid Flow and Heat Transfer Characteristics around a Surface-Mounted Module Cooled by Forced Air Flow by Piezoelectric Cooling Fan (압전세라믹 냉각팬에 의한 강제 공랭 모듈 주위의 유체유동과 열전달 특성)

  • Park, G.J.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.272-277
    • /
    • 2003
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. A flexible PZT fan with distortion in a fluid transport system of comparatively simple structure which was mounted on a PCB in a parallel-plate channel($450{\times}80{\times}700mm^3$) accelerates surrounding fluid locally. Input voltages of 20-100V and a resonance frequency of 23Hz were used to vibrate the cooling fan. Input power to the module was 4W. The cooling effect using a PZT fan was larger than that of free convection. Fluid flow around the module were visualized by using PIV system. The temperature distribution around heated module were visualized by using liquid crystal film(LCF). We found that the flow type was y-shaped and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

  • PDF

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling (급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경)

  • 김요셉;김영일;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine (EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향)

  • Heo, Hyung-Seok;Lee, Dong-Hyuk;Kang, Tae-Gu;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.

Investigation on the Cooling Characteristics of a Regenerative Evaporation Water Cooler (재생증발식 수냉각기의 냉각성능 해석)

  • Choi Bong-Su;Hong Hi-Ki;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.393-401
    • /
    • 2006
  • The regenerative evaporation water cooler is devised and analysed in this study. The regenerative evaporation water cooler is composed of a sensible heat exchanger to cool the incoming air, followed by a latent heat exchanger to cool the water evaporatively with the cooled air flowing out of the sensible heat exchanger. By linearizing psychrometric characteristics, the heat and mass transfer in the regenerative evaporation water cooler is analyzed theoretically. The results show that the water can be cooled down even lower than the wet-bulb temperature of the inlet air. When the inlet air is $32^{\circ}C$ and 20% in relative humidity, and the inlet temperature of the water is $20^{\circ}C$, the regenerative evaporation water cooler provides a larger cooling capacity than the conventional evaporation water cooler if the effectiveness of the latent heat exchanger is higher than 0.6 and that of the sensible heat exchanger is higher than 0.5.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Study on the Performance of Thermoelectric Cooling System for Design Parameters of the Cooling Jacket (냉각재킷의 설계인자에 따른 열전냉각장치의 성능에 관한 연구)

  • Park, Sang-Hee;Lee, Jeong-Eun;Kim, Kyoung-Jin;Kim, Dong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached to the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket were the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The increase in the number of channels for water flow passage inside the cooling jacket also showed significant improvement on the performance of the thermoelectric cooling system such as the cooling capacity and the COP of the refrigeration system.