• Title/Summary/Keyword: Air-Bearing Surface

Search Result 117, Processing Time 0.031 seconds

A Design of Air-Lubricated Slider Bearings for Improving the Flying Stability in Track Seek and Increasing the Air-Bearing Stiffness (트랙탐색 안정성과 베어링 강성 향상을 위한 공기윤활 슬라이더 베어링의 최적설계)

  • Kang, Tae-Sik;Park, No-Yeol;Lee, Sung-Chang;Choi, Dong-Hoon;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1561-1569
    • /
    • 2000
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

  • PDF

Optimum Design of Head Slider with Ultra-Thin Air-Lubricated Spacing for Enhanced Flying Characteristics (부상특성 향상을 위한 극소 공기윤활막을 지닌 헤드 슬라이더의 형상 최적 설계)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon;Park, No-Yeol;Lee, Seong-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.725-733
    • /
    • 2001
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

Dynamic Characteristics of Externally Pressurized Air Pad Bearings with Closed Loop Grooves (닫힌 그루브를 갖는 외부가압 공기 패드 베어링의 동특성 해석)

  • Park, Gwang Won;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • This paper presents a theoretical investigation of the dynamic characteristics of externally pressurized air pad bearings with closed loop grooves. These grooves are made on the surface of bearings to reduce the number of supply holes so that manufacturing costs can be reduced. The semi-implicit method is applied to calculate the time varying pressure profile on the air bearing surface owing to the advantages of numerical stability and fast time tracing characteristics. The static pressure of the groove bearings is much higher than that without grooves, so the groove bearings can provide high load carrying capacity. The equation of motion considering vertical motion and tilting motion are also solved using the Runge-Kutta 4th order method. By combining the semi-implicit method and the Runge-Kutta method, fast calculations of the dynamic behavior of the air bearing can be achieved. The variations of bearing reaction force, air film reaction moment, height, and tilting angle are investigated for the step force input, which is 20% higher than the bearing reaction, when the nominal clearance is 6 mm. The effect of the groove width and the groove depth are investigated by calculating the dynamic behavior. The possibility of the air hammering with the depth of the groove is found and discussed.

Magnetization Distribution in Thin-Film Magnetic Head

  • Shin, Kyung-Ho;Shalyguina, E.E.;Lee, J.H;Rhie, K.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.55-58
    • /
    • 2000
  • Local magnetic properties and magnetization distributions on the air-bearing surface of a thin-film magnetic head have been studied by using scanning magneto-optical Kerr microscopy. The examined head was a merged MR read/inductive writing head with a write gap equal to 0.3 $\mu m$. Sizes of top and bottom pole-tips on the air-bearing surface of the writing head were equal to $3\mu m\times3\mu m$ and $3\mu m\times30\mu m$, respectively, The measured magnetic characteristics on the head air-bearing surface were found to be very sensitive to the head design. In particular, magnetization distributions were discovered to have asymmetrical shape. Maximum magnitudes of the magnetization were located near the shorten pole-tip. So, it was experimentally proved that more magnetic flux emanates just from this part of the air-bearing head surface.

  • PDF

A Study on Bubbly Lubrication of High-Speed proceeding Bearing Considering Live Surface Tension

  • Chun, S.-M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.111-112
    • /
    • 2002
  • The influence of aerated oil on a high-speed proceeding bearing is examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing including the live surface tension of aerated oil. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil aeration level, air bubble size and shaft speed. The results show that, if the live surface tension is considered, the effect of air bubbles on the bearing load capacity is reduced due to temperature engagement comparing with that under the condition of a constant surface tension.

  • PDF

A Study on the Lift-off Characteristics of an Air-lubricated Multi-leaf Foil Journal Bearing (공기윤활 다엽포일 저널 베어링의 회전축 부상 특성에 관한 연구)

  • 이용복;김태호;김창호;이남수;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.290-296
    • /
    • 2001
  • Lift-off means that the rotating journal surface separates from the leaf surface in an air-lubricated multi-leaf foil journal bearing. Lift-off builds up minimum film thickness which will provide load capacity between leaves and journal. In this paper an analysis of air-lubricated multi-leaf foil journal bearing was performed with effects of multi-leaf foil deflection and compressible lubrication equation simultaneously. Minimum film thickness built up versus journal speed predicts the lift off characteristics and these results will be useful in designing and selecting the proper speed of the air-lubricated multi-leaf foil journal bearing.

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

A Study on the Durability Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프포일 저널 베어링의 내구성 특성에 관한 연구)

  • 김태호;이용복;김창호;이남수;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.212-219
    • /
    • 2001
  • This paper describes a durability characteristics of an air-lubricated bump foil journal bearing for high speed turbomachinerys at room temperature. At first, lift-off test and load capacity test were performed to understand the general characteristics of an air-lubricated bump foil journal bearing. A 52N weighted bump foil bearing sleeve was lifted off from a rotating journal at about 3,000rpm, and produced a load capacity of 500N at an operating speed of 15,000rpm. The next was 500 cycles lift-off test with an air-lubricated bump foil journal bearing that had a molybdenum disulfide(MoS$_2$) solid lubricant coated top foil. Data from measuring bearing torque and temperature and the observation of rubbing surface were included in results. Therefore the results of this work will aid in proving durability of air-lubricated bump foil journal bearings.

  • PDF

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.199-206
    • /
    • 2002
  • This paper describes a reliability characteristics of an air foil journal bearing for high speed turbomachinery at room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with motor driven test rig. Lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About load carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, The trends in change of start torque, stop torque, and bearing temperature were shown during 10,000 cycle start-stop test of an air foil journal bearing. from the results of this work, an air foil bearing will be done well, as a supported bearing for high speed turbo-compressor.

  • PDF