• Title/Summary/Keyword: Air to water

Search Result 6,142, Processing Time 0.032 seconds

자연환경 변화와 광물의 역할

  • 김수진
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.3-11
    • /
    • 2000
  • The earth environment consists of four spheres : geosphere, hydrosphere, atmosphere and biosphere. The geosphere consists mostly of minerals. It, however, contains some water and air in its shallow depth. Although hydrosphere and atmosphere consist predominantly of water and air, respectively, both contain some minerals. The biosphere consisting of various organisms is present in the interfaces of geosphere, hydrosphere and atmosphere. The natural environment of the earth is continuously changing by the interaction of four spheres. It suggests that out relevant environmental problems can not be revolved without understanding the natural relationship of these four spheres. Minerals in our environment are very important because they are the main constituent materials of the earth and they control our environment. The roles of minerals in our environment have not been understood even in the scientific society. Thus their roles have been neglected. Review of studies on the environmental mineralogy so far made at our laboratory and others show that minerals control the environment in various ways. Minerals neutralize the acid water as well as acid rain. Minerals in soils and rocks are major neutralizer of the acid rain. Salinization of sea water is attributed to the ionic substitution between minerals and sea water. Some minerals control the humidity of the air. Corals, the products of biomineralization, are the main carbon controller of the air. Minerals also adsorb heavy metals, organic pollutants and radioactive nuclides. Such remarkable functions for controlling the environment come from the mineral-water reaction and biomineralization. All these phenomena are subjects of the environmental mineralogy, a new field of earth science.

  • PDF

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

Development of an external twin-fluid nozzle for Selective Catalytic Reduction (선택적 촉매 환원법을 위한 외부 혼합형 이유체 노즐 개발에 대한 실험적 연구)

  • Park, J.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.24-33
    • /
    • 2004
  • The effect of the working fluid flow conditions and nozzle geometry on the spray performance of a twin-fluid nozzle used in Selective Catalytic Reduction is investigated experimentally. The liquid pressure is varied in the range of 0.3atm to 1.5atm and the air pressure is varied from the 0.5atm to 3.0atm. relative position between liquid nozzle(internal nozzle) and air nozzle(external nozzle) tip changes front 1mm inside the air nozzle to 1mm outside the air nozzle. The orifice diameter of the air nozzle is varied with 5mm. 6mm and 7mm. Spray visualization is realized with CCD-Camera. SMD(Sauter Mean Diameter) and mean particle velocities are measured by PDPA(Phase Doppler Particle Analyzer) under various experimental conditions. The measuring point is 300mm away from the nozzle tip in the downstream spray. The experimental results are that spray angle is depended air flow rate because nozzle diameter, air pressure and nozzle tip relative positions are related air flow rate. SMD is depended air flow rate and water flow rate. Also, SMD is increased when water flow rate is bigger. SMD is decreased when Air flow rate is bigger.

  • PDF

Freezing of Micro-size Water Droplet on Micro Porous Surface (박판형 미세다공 표면에서의 미소액적의 동결)

  • Park, Chun-Wan;Lee, Dong-Gyu;Peck, Jong-Hyeon;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Gas diffusion layer(GDL) in PEMFC performs the discharge of water vapor smoothly. When GDL is revealed to cold environment, the freezing of the water droplet or water net in GDL occurs. The purpose of this work is to observe the cooling and freezing behavior of the water droplet which meets to the microporous surface and air under the various low temperature conditions. GDL was coated with waterproof material, which has three types of coating rate, 0, 40 and 60%. Water droplets in series of sizes on GDL were supercooled, frozen and crystalized orderly by circulating low temperature brine. The process of cooling was investigated with the temperature and the snapshot of the water droplet.

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content arc satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When, AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju-Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When. AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Characteristics of a Small Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (소형 스크류식 원심펌프의 기액 이상류 특성)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.9-15
    • /
    • 1999
  • A screw-type centrifugal pump was manufactured to carry primarily solids and its impeller had a wide flow passage. However, there was an effect on the flow passage shape on delay of the choke due to entrained air not being clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For this reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that there was a loss of pump head from single-phase flow to the choke due to air entrainment near the best efficiency point being large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Air Influx Characteristics of Turbo Pumps (공기 유입시의 터보펌프 특성)

  • Kim, You-Taek;Nam, Cheong-Do;Kang, Ho-Keun;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.43-48
    • /
    • 2004
  • A screw-type centrifugal pump was manufactured to carry solids primarily and its impeller has a wide flow passage. However, the effect of flow passage shape on delay of the choke due to entrained air has not been clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For that reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that loss of pump head from single-phase flow to the choke due to air entrainment new the best efficiency point was large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Effect of Austenitizing Temperature and Cooling Rate on Microstructure and Hardness of Low-carbon SCM415 Steel (오스테나이타이징 온도와 냉각 속도가 SCM415 저탄소강의 미세조직과 경도에 미치는 영향)

  • Lee, J.U.;Lee, G.M.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • In this study, variations in the microstructure and hardness of a low-carbon SCM415 steel with austenitizing temperature and cooling rate are investigated. When the austenitizing temperature is lower than the A1 temperature (738.8 ℃) of the SCM415 steel, the microstructures of both the air-cooled and water-cooled specimens consist of ferrite and pearlite, which are similar to the microstructure of the initial specimen. When heat treatment is conducted at temperatures ranging from the A1 temperature to the A3 temperature (822.4 ℃), the microstructure of the specimen changes depending on the temperature and cooling rate. The specimens air- and water-cooled from 750 ℃ consist of ferrite and pearlite, whereas the specimen water-cooled from 800 ℃ consists of ferrite and martensite. At a temperature higher than the A3 temperature, the air-cooled specimens consist of ferrite and pearlite, whereas the water-cooled specimens consist of martensite. At 650 ℃ and 700 ℃, which are lower than the A1 temperature, the hardness decreases irrespective of the cooling rate due to the ferrite coarsening and pearlite spheroidization. At 750 ℃ or higher, the air-cooled specimens have smaller grain sizes than the initial specimen, but they have lower hardness than the initial specimen owing to the increased interlamellar spacing of pearlite. At 800 ℃ or higher, martensitic transformation occurs during water cooling, which results in a significant increase in hardness. The specimens water-cooled from 850 ℃ and 950 ℃ have a complete martensite structure, and the specimen water-cooled from 850 ℃ has a higher hardness than that water-cooled from 950 ℃ because of the smaller size of prior austenite grains.