• Title/Summary/Keyword: Air to water

Search Result 6,142, Processing Time 0.038 seconds

Effect of Air Void Organization to Frost-Resistance in High-Strength Concrete (고강도 콘크리트의 동해저항에 관한 기포조직의 영향)

  • 김생빈;홍찬홈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.5-10
    • /
    • 1991
  • This study was performed to find out the effect about the spacing factor and durability factor to evaluate the durability of concrete in high-strength concrete with freezing and thawing as following each condition, 1) unit cement content : 500kg/$\textrm{m}^3$, 550kg/$\textrm{m}^3$ 2) water/cement ratio : 25%, 30%, 35% 3) air content : below 1.5%, 1.6~3.5%, 4~6%, over 7% From the results tested, a variation of air content was more effective to the durability of concrete than that of water/cement ratio and unit cement content.

  • PDF

DEVELOPMENT OF A GRAIN CIRCULATING TYPE NATURAL AIR IN-BIN DRYER

  • Yun, H.S.;Chung, H.;Cho, Y.G.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.405-412
    • /
    • 2000
  • A natural air in-bin grain dryer with a grain circulator was developed for on farm use. Natural air drying test for rough rice was carried out to evaluate drying rate, uniformity of moisture content distribution in grain bed and energy consumption. It took 10 days to dry 8 ton of paddy rice from 21.9%(w.b) to 16.7%(w.b) moisture contents using the prototype dryer. The average drying rate was 0.52%/day. The uniformity of moisture content after drying was superior to the conventional natural air dryer where is grains were not circulated during drying periods. The dryer performance evaluation index was 738.3KJ/(kg.water), which was more effective than that of grain circulation t)pe hot air dryer(3,500-5,000 KJ/kg.water).

  • PDF

An Experimental Study on the Melting of Horizontal Ice - Bar Located Concentrically in the Cylinder (수평원관속에 동심으로 놓여있는 얼음 봉의 융해현상에 관한 보험적 연구)

  • Lee, Dong-Wook;Yoo, Sang-Sin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.196-203
    • /
    • 1986
  • The melting phenomena of horizontal cylindrical ice-bar immersed in water and air concentrically in the cylinder are experimentally investigated for the temperature range from $3.5^{\circ}C\;to\;2.5^{\circ}C$. The shapes of the melting ice-bar are recorded photographically by the shadowgraph method. The shadowgraphs of the melting ice-bar show that water adjacent to the bar flows upward for the temperature range from $3.5^{\circ}C\;to\;5.8^{\circ}C$ while above $5.8^|\circ}C$ the flow is downward direction. The local and average Nusselt numbers are obtoined with the recorded shadowgraphs and comparator. Melting shapes of the ice-bar in the air show the vortex motion in the bottom portion of the bar, whereas no vortex motion appears in the bottom portion when the bar is melted in the water.

  • PDF

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

Performance of a Plate-Type Enthalpy Exchanger Made of Papers Having Different Properties (종이 물성에 따른 판형 전열교환기의 성능)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.547-555
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Papers having different properties were made from the same pulp by calendering or refining. Enthalpy exchanger samples were made from the papers, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were obtained, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that effective efficiency of latent heat transfer was approximately the same independent of the samples, which suggests that papers made of the same pulp show similar water vapor transmission characteristics independent of the degree of calendering or refining. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

Effect of Paper Properties on the Performance of a Enthalpy Exchanger (종이 물성이 전열교환 엘리먼트 성능에 미치는 영향)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes (소수성 PTFE 막의 산소동위원소 분리특성)

  • 김재우;박상언;김택수;정도영;고광훈;박경배
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2003
  • We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve (전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성)

  • Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan;Ha, Soo-Jung;Jeon, Min-Ju;Park, Sung-Hyeon;Lee, Sang-Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

Water Treatment Using DAF(Disssolved Air Flotation) (용존공기 부상법(Disssolved Air Flotation)을 이용한 정수처리)

  • Lee, Byoung-Ho;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 1996
  • Treatment efficiencies of water quality parameters such as $KMnO_4$ Demand, $UV_{254}$, Turbidity, and LAS(Linear Alkyl Sulfonate) were compared between DAF(Dissolved Air Flotation) and CGS(Conventional Gravitational Sedimentation). The experimental results showed that DAF is much more efficient in treatment of water quality parameters than CGS. The optimum pH was about 7, and optimum alum($Al_2(SO_4)_3$) dose was about 30 ppm for DAF treatment. Economic aspects were also analyzed for bath systems. Even though production cost per ton of drinking water is slightly higher in DAF than in CGS, it turned out that construction cost and land value of CGS far surpass the production cost. DAF system is superior in removal efficiency of impurities and in production cost as a whole to CGS system.

  • PDF