• 제목/요약/키워드: Air supply system

검색결과 881건 처리시간 0.032초

급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구 (Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions)

  • 고권현
    • 한국화재소방학회논문지
    • /
    • 제32권6호
    • /
    • pp.15-21
    • /
    • 2018
  • 본 연구에서는 급기가압 조건에서 거실, 부속실 및 계단실로 구성된 복합 구획 공간에 대해 화재해석을 수행하고 가압 및 환기 조건에 따른 화재 연기의 유동 특성을 분석하였다. 화재 해석은 유효누설면적을 측정하기 위해 제작된 누기율 시험설비에 대하여 수행하였으며, 화재의 거시적 특성과 각 구획에 대한 유동 및 압력 특성의 분석을 통해 급기가압 조건에서의 화염 및 연기 거동에 대한 이해를 증진시키고자 하였다. 화재 해석 결과는 화재 발열량의 크기가 환기 시스템에 의해 공급되는 공기량에 의해서 민감하게 영향을 받게 됨을 보여주었다. 거실과 부속실에서의 속도분포 분석 결과를 통해 급기가압의 조건에서도 화재 연기가 문의 상층부를 통해 부속실로 유출될 수 있음을 확인하였다. 이를 통하여 급기가압 제연시스템의 설계와 적용에 있어서 화재 크기와 공간적 특성과 같은 요인을 고려하는 것이 매우 중요하다는 것을 확인할 수 있었다.

시멘트 사일로의 적분생성억제 (Suppression of Coating Formation in Cement Silo)

  • 양승혁;이병곤
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.16-21
    • /
    • 2003
  • The object of this research is to prevent the industrial accidents which frequently occurred in breaking the coating in cement silo. Research was conducted to identify the cause of the coating formation, and the model experiment of aeration system was done to investigate the effect of moisture air on the coating formation. The results show that dehumidification of supply air in aeration system is the most important factor to suppress the coating formation, and the refrigerated low pressure air dryer applicable to the aeration system of cement silo was newly designed and developed. When this air dryer is applied to the cement silo, 88% of the moisture component of supply air can be reduced. Therefore the cleaning cycle extends over twice, and it contributes to the decrease of industrial accidents and cleaning cost.

지하공기-물 직접접촉식 열교환기를 구비한 히트펌프의 성능 (Performance of Underground Air-to-Water Heat Pump with Direct Contact Heat Exchanger)

  • 김영화;강연구;성문석;유영선;김종구;장재경
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.172.1-172.1
    • /
    • 2010
  • In Jeju, underground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But greenhouse heating method by direct supply of underground air has several problems as like low temperature below $20^{\circ}C$ or high relative humidity over 90%. The underground air is inadequate in heating of crops such as mangos, oranges with the growing temperature over $20^{\circ}C$. Also if the relative humidity of greenhouse is kept with over 90%, diseases can strike almost of the crops. And also the ventilation loss becomes larger because the air pressure of inside greenhouse by direct supply of underground air is higher. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analyzed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air in this heat pump system were 46.5~31.4 kW, 34.9~20.9 kW respectively.

  • PDF

VVVF기를 기초한 가변식기압급수설비의 자동제어 문제 (Automatic control problems of VVVF converter-based variable-frequency type air)

  • 박용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.468-468
    • /
    • 1991
  • The variable-frequency type water supply equipment, which adopts the variable-voltage and variable-frequency converter(VVVF converter) to govern automatically the rotating speed of a pump, can save 15-20% of power, as compared with a throttle-controlled pump device or an airpressurized water supply equipment, and is finding a wide application. However, it still has some disadvantages : greater pressure fluctuations during switching over the pump and prolonged low-effeciency running of the pump in the case of small consumption of water. Therefore, it is difficult to apply the equipment to the fire water supply system where the water should not be put into use unless a fire takes place, and the water pressure in pipelines should permanently remain constant. This paper introduces the automatic regulation principle of the variable-frequency type air-pressurized water supply equipment (hereafter referred to as simply BFQS equipment) for dual purposes of daily life and fire control, which combined both technologies of speed governing by a converter and air-pressurized water supplying, then discusses some problems related to automatic control, and finally gives the experimental results of an embodiment-BPQS-100-50 water supply equipment.

  • PDF

High-Efficiency Non-contact Power Supply System

  • Zheng, Bin;Kwan, Dae-Hwan;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.233-235
    • /
    • 2005
  • Non-contact power supply (NCPS), as a clean and safe energy supply concept has been applying wildly. Comparing with the conventional transformer the non-contact transformer has a large air gap between the long primary winding and the secondary winding. Due to it, the non-contact transformer has increased leakage inductance and reduced magnetizing inductance. So the high frequency series resonant converter has been widly used on the non-contact power supply system for transferring the primary power to the secondary one, from what a high influence voltage can be gained on the secondry coil even though the large air gap exists. However, it still has the disadvantages of the load sensitive voltage gain characteristics when load is changing. In this paper, we propose a fuzzy logic controller to adjust the frequency of the inverter to track the resonat which is changing when the load is change.

  • PDF

중앙냉방시스템의 최적제어에 관한 연구 (Optimal Control for Central Cooling Systems)

  • 안병천
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

마이크로 미립 이송시스템 개발에 관한 연구 (Development of Feeding System by Micro Particle Powder)

  • 박정수
    • 한국산업정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.105-110
    • /
    • 2003
  • 본 연구에서는 마이크로미립 이송시스템의 에어 누수가 과다함으로 인해 압축에어를 사용하는 큰 문제점을 발생되어 로터리피더의 에어누수를 기존대비 50% 감소시켰으며 생산제조원가 면에서도 기존가격의 60%수준으로 개발함으로써 원료의 원활한 이송이 될 수 있는 장치의 개발에 대해 입증하였다.

  • PDF

건축설비용 워터햄머흡수기의 동특성에 관한 수치 연구 (A Numerical Study on the Dynamic Characteristics of Water Hammer Arresters for Building Service Applications)

  • 노승환;차동진
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.269-277
    • /
    • 2002
  • Dynamic characteristics of water hammer arresters installed in a building water supply system have been investigated numerically by utilizing a commercial rode that employs the method of characteristics. Some preliminary results with those arresters produced in this study agree well with the previously reported. Then, the arresters have been incorporated into a water supply pipe system of a $59m^2$ apartment unit constructed by a leading construction company, and their dynamic characteristics, especially on the reduction in the water hammer pressure, are investigated. It is found that the setting of the arresters in the pipe system, which is recommended by the company, may not be proper for reducing the pressure to less than 1082.0 kPa when buick-closure valves in the pipe system are closed within 30 ms at the static pressure of 542.6 kPa. More arresters in the system may be required to meet a pressure criteria.

Dynamic Characteristics of Water Hammer Arresters for Building Service Applications

  • Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권1호
    • /
    • pp.40-49
    • /
    • 2003
  • Dynamic characteristics of water hammer arresters installed in a building water supply system have been investigated numerically by utilizing a commercial code that employs the method of characteristics. Some preliminary results with those arrester models produced in this study agree well with the previously reported. Then, the arrester models have been incorporated into a water supply pipe system of a 59 $m^2$apartment unit constructed by a leading construction company, and their dynamic characteristics have been investigated, especially on the reduction in the water hammer pressure. It is found that the setting of the arresters in the pipe system, which is recommended by the company, may not be proper for reducing the pressure down below 1,082.0 kPa (10.0 kg$g_f$/$cm^2$) when quick-closure valves in the pipe system are closed within 30 ms at the static pressure of 542.6 kPa (4.5 kg$g_f$/$cm^2$). More arresters in the system may be required to meet pressure criteria stated on the related standards and codes.

미생물 안전을 위한 병원건물의 환기설계에 따른 공기 감염균 확산에 관한 시뮬레이션 연구 (A Study on simulation analysis of the microbe transport of air-born virus in hospital for microbiological safety)

  • 최상곤
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.115-123
    • /
    • 2017
  • Recently there is a growing interest in the airborne spread of virus. In particular, there is growing interest in secondary infection through the air in the hospital. The distribution of air-born virus depends on ventilation system installed in a hospital. In this study, simulations were carried out to predict the move of air-born virus by ventilation system at hospital. Simulation results showed that pressure distribution was -372.05Pa ~ -3.45 Pa at 1st floor incase of only used mechanical exhaust at bathroom, shower stall, storage, kitchen etc.. if ventilation switch from used mechanical exhaust to mechanical exhaust & mechanical supply. Simulation results showed that pressure distribution was -336.44Pa at stair hall < -0.2Pa at bathroom < mean 1.19Pa at other room. So simulation results showed that using all of the mechanical supply and mechanical exhaust was more effective then the mechanical exhaust for maintain the pressure distribution in hospital. It was also showed that when using the mechanical supply and mechanical exhaust more effectively prevention of air born virus diffusion.