• 제목/요약/키워드: Air supply & exhaust

검색결과 159건 처리시간 0.033초

종이 물성이 전열교환 엘리먼트 성능에 미치는 영향 (Effect of Paper Properties on the Performance of a Enthalpy Exchanger)

  • 김내현;조진표;송길섭;김동훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

액주형 이류체노즐의 반경반향 분무특성에 관한 연구 (A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle)

  • 최진철;노병준;강신재
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

열풍 공급 방식의 도장 건조 설비에서 선체 블록 도장 건조 시간 예측에 관한 연구 (A Study on the Prediction of Paint Dry Time at Ship Block's Inner Wall Placed in the Paint Dry Facility Adopting the Hot Air Supply System)

  • 송유석;설신수;윤광원;양문식;정재환;윤현식
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.75-81
    • /
    • 2011
  • An indirect concept and method is proposed to predict the paint dry time at the inside wall of ship block. To implement this concept on computer program, optimal hot air supply-exhaust system of paint dry facility was designed by CFD simulation and experiment was performed to get the paint dry time curve according to various paint dry conditions. After combining the block inside environment from the simulation results and the paint dry time prediction curve from the curve-fitting of experimental result, the GUI program which can be executed in general PC OS has been finally developed.

  • PDF

솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용 (Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

환기방식별 실내 환기효율 분석에 관한 실험적 연구 (An Experimental Analysis of Ventilation Effectiveness using Tracer Gas)

  • 강태욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.260-266
    • /
    • 2006
  • A tracer gas technique based on ASTM Standard E741-83 was used to measure ventilation performances in a model chamber ($0.84m{\times}0.68m{\times}0.7m$) with an exhaust fan and a supply fan. Experiments were performed for the ventilation effectiveness on three types of mechanical ventilation systems. For all cases. higher ventilation effectiveness was found in the type to ventilation system due to shorter residual time of air compared to type 1 and type 3.

급수용 급속공기밸브의 성능특성에 관한 실험적 연구 (Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works)

  • 이선곤;강세호;양철수;우창기
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.

제3종 하이브리드 환기시스템을 적용한 공동주택의 환기성능 예측 (A Prediction of Hybrid Ventilation System Performance in Apartment House)

  • 황지현;오창용;김무현
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.541-548
    • /
    • 2006
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, $120m^3/h$. As the results, residents feel comfortable thermally for $60m^3/h$. In the case of $120m^3/h$, however, residents feel uncomfortable both thermally and in air currents. In this study the energy saving for space heating is also an important factor. In the case of whole region with $180m^3/h$, residents feel comfortable at each region of the model apartment. It is shown that this hybrid ventilation system is possible method for the apartment house.

공기구동 제어밸브 비정상상태 운전변수에 관한 실험적 연구 (Experimental Study of Operating Parameters for Pneumatic Control Valve in Abnormal Conditions)

  • 김양석;김대웅;이병오;정래혁;이승호
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.613-619
    • /
    • 2016
  • 공기구동 제어밸브는 여러 유형의 발전소에서 유체계통의 유량을 제어하거나 탱크의 수위를 조절하는 중요한 기능을 수행하며 발전소 수명기간 동안 성능이 보장되어야 한다. 공기구동 제어밸브는 공기구동기에 공기를 공급하거나 배기하여 작동시키며, 다양한 기능을 하는 부속기기로 구성된 제어설비를 이용하여 공기량을 조절함으로서 밸브 위치를 제어한다. 본 논문에서는 2인치 공기구동기에 I/P 변환기, 포지셔너 등이 장착된 제어밸브 동작모사 실험 장치를 이용하여 공기공급배관에서의 공기누설, 밸브 패킹마찰력 변화, 포지셔너 설정 불량 등을 모사하고, 약 67% 개도에서 ${\pm}2%$ 이하 제어구간에서의 밸브-구동기 거동을 측정하여 비교하였다.

직접분사식 디젤기관에서 MTBE 함유율 변화에 의한 배출가스 특성 (Exhaust Emission Characteristics by Alteration of MTBE Contents in D. I. Diesel Engine)

  • 오영택;최승훈
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.724-732
    • /
    • 2002
  • Although the demands for diesel engine is increased, our world is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. In this study, the potential possibility of oxygenated fuel such as Methyl tertiary butyl ether (MTBE) was investigated for the sake of exhausted smoke reduction from diesel engine. MTBE has been used as a fuel additive blended into unleaded gasoline to improve octane number, but the study of application for diesel engine was incomplete. Because MTBE includes oxygen content approximately 18%, it is a kind of oxygenated fuel that the smoke emission of MTBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at high load and speed in diesel engine. But, the NOx emission of MTBE blended fuel is increased compared with commercial diesel fuel. And. it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from $C_1$to $C_{6}$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of smoke emission. The results of this study show three conclusions. 1. The smoke omission of the MTBE blended fuel is lower than that of the diesel fuel at all experimental region in direct injection diesel engine. 2. Individual hydrocarbons(C$_1$~ $C_{6}$) as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with diesel fuel. 3. Smoke emission from diesel engines was strongly depended on oxygen content in fuel regardless of operating condition.

고층건축물의 피난경로 가압제연시스템 성능개선대책에 관한 연구 (A Study on Performance Improvement Measures of Pressurized Smoke Control Systems for Exit Passageways of High-Rise Buildings)

  • 손봉세;김진수
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.703-714
    • /
    • 2009
  • One of the biggest problems in smoke control systems for high-rise buildings is stack effect, but there are no recognized methods or measures to solve the problem of stack effect as yet. The stack effect can be overcome by forming the uprising current inside the stair hall properly, but there is a limit to the height in supplying into the stair hall the smoke control air volume to be supplied to a floor in case of escape from fire. The limit to the height can be extended by over-coming the stack effect by pressurizing the stair hall and the ancillary room simultaneously. It can also be anticipated that the stack effect can be overcome by connecting the air supply shaft to the stair hall at the top. As a result of computer simulations using a network type of tool, it is found that adequate performance can be achieved by pressurizing the stair hall only for a building of 190m or less, and up to 360m when pressurizing the stair hall and the ancillary room simultaneously. In all those cases, however, an overpressure venting damper is required which operates within a suitable range for venting the overpressure outside.