• Title/Summary/Keyword: Air quality forecasting model

Search Result 56, Processing Time 0.022 seconds

Optimization of the computing environment to improve the speed of the modeling (WRF and CMAQ) calculation of the National Air Quality Forecast System (국가 대기질 예보 시스템의 모델링(기상 및 대기질) 계산속도 향상을 위한 전산환경 최적화 방안)

  • Myoung, Jisu;Kim, Taehee;Lee, Yonghee;Suh, Insuk;Jang, Limsuk
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.723-735
    • /
    • 2018
  • In this study, to investigate an optimal configuration method for the modeling system, we performed an optimization experiment by controlling the types of compilers and libraries, and the number of CPU cores because it was important to provide reliable model data very quickly for the national air quality forecast. We were made up the optimization experiment of twelve according to compilers (PGI and Intel), MPIs (mvapich-2.0, mvapich-2.2, and mpich-3.2) and NetCDF (NetCDF-3.6.3 and NetCDF-4.1.3) and performed wall clock time measurement for the WRF and CMAQ models based on the built computing resources. In the result of the experiment according to the compiler and library type, the performance of the WRF (30 min 30 s) and CMAQ (47 min 22 s) was best when the combination of Intel complier, mavapich-2.0, and NetCDF-3.6.3 was applied. Additionally, in a result of optimization by the number of CPU cores, the WRF model was best performed with 140 cores (five calculation servers), and the CMAQ model with 120 cores (five calculation servers). While the WRF model demonstrated obvious differences depending on the number of CPU cores rather than the types of compilers and libraries, CMAQ model demonstrated the biggest differences on the combination of compilers and libraries.

A Development of PM10 Forecasting System (미세먼지 예보시스템 개발)

  • Koo, Youn-Seo;Yun, Hui-Young;Kwon, Hee-Yong;Yu, Suk-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

A Study on the Utilization of Air Quality Model to Establish Efficient Air Policies: Focusing on the Improvement Effect of PM2.5 in Chungcheongnam-do due to Coal-fired Power Plants Shutdown (효율적인 대기정책 마련을 위한 대기질 모델 활용방안 고찰: 노후 석탄화력발전소 가동중지에 따른 충남지역 PM2.5 저감효과 분석을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Lee, Jae-Bum;Choi, Ki-Cheol;Jang, Lim-Seok;Choi, Kwang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.687-696
    • /
    • 2018
  • In order to develop effective emission abatement strategies for coal-fired power plants, we analyzed the shutdown effects of coal-fired power plants on $PM_{2.5}$ concentration in June by employing air quality model for the period from 2013 to 2016. WRF (Weather Research and Forecast) and CMAQ(Community Multiscale Air Quality) models were used to quantify the impact of emission reductions on the averaged $PM_{2.5}$ concentrations in June over Chungcheongnam-do area in Korea. The resultant shutdown effects showed that the averaged $PM_{2.5}$ concentration in June decreased by 1.2% in Chungcheongnam-do area and decreased by 2.3% in the area where the surface air pollution measuring stations were located. As a result of this study, it was confirmed that it is possible to analyze policy effects considering the change of meteorology and emission and it is possible to quantitatively estimate the influence at the maximum impact region by utilizing the air quality model. The results of this study are expected to be useful as a basic data for analyzing the effect of $PM_{2.5}$ concentration change according to future emission changes.

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia (황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구)

  • Choi, Daeryun;Yun, Huiyoung;Chang, Limseok;Lee, Jaebum;Lee, Younghee;Myoung, Jisu;Kim, Taehee;Koo, Younseo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.531-546
    • /
    • 2018
  • Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.

An Analysis on Effects of the Initial Condition and Emission on PM10 Forecasting with Data Assimilation (초기조건과 배출량이 자료동화를 사용하는 미세먼지 예보에 미치는 영향 분석)

  • Park, Yun-Seo;Jang, Im-suk;Cho, Seog-yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.430-436
    • /
    • 2015
  • Numerical air quality forecasting suffers from the large uncertainties of input data including emissions, boundary conditions, earth surface properties. Data assimilation has been widely used in the field of weather forecasting as a way to reduce the forecasting errors stemming from the uncertainties of input data. The present study aims at evaluating the effect of input data on the air quality forecasting results in Korea when data assimilation was invoked to generate the initial concentrations. The forecasting time was set to 36 hour and the emissions and initial conditions were chosen as tested input parameters. The air quality forecast model for Korea consisting of WRF and CMAQ was implemented for the test and the chosen test period ranged from November $2^{nd}$ to December $1^{st}$ of 2014. Halving the emission in China reduces the forecasted peak value of $PM_{10}$ and $SO_2$ in Seoul as much as 30% and 35% respectively due to the transport from China for the no-data assimilation case. As data assimilation was applied, halving the emissions in China has a negligible effect on air pollutant concentrations including $PM_{10}$ and $SO_2$ in Seoul. The emissions in Korea still maintain an effect on the forecasted air pollutant concentrations even after the data assimilation is applied. These emission sensitivity tests along with the initial condition sensitivity tests demonstrated that initial concentrations generated by data assimilation using field observation may minimize propagation of errors due to emission uncertainties in China. And the initial concentrations in China is more important than those in Korea for long-range transported air pollutants such as $PM_{10}$ and $SO_2$. And accurate estimation of the emissions in Korea are still necessary for further improvement of air quality forecasting in Korea even after the data assimilation is applied.

Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data (동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

Improvement of PM10 Forecasting Performance using Membership Function and DNN (멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상)

  • Yu, Suk Hyun;Jeon, Young Tae;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.

Improvement of PM10 Forecasting Performance using DNN and Secondary Data (DNN과 2차 데이터를 이용한 PM10 예보 성능 개선)

  • Yu, SukHyun;Jeon, YoungTae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.

Exploiting Neural Network for Temporal Multi-variate Air Quality and Pollutant Prediction

  • Khan, Muneeb A.;Kim, Hyun-chul;Park, Heemin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.440-449
    • /
    • 2022
  • In recent years, the air pollution and Air Quality Index (AQI) has been a pivotal point for researchers due to its effect on human health. Various research has been done in predicting the AQI but most of these studies, either lack dense temporal data or cover one or two air pollutant elements. In this paper, a hybrid Convolutional Neural approach integrated with recurrent neural network architecture (CNN-LSTM), is presented to find air pollution inference using a multivariate air pollutant elements dataset. The aim of this research is to design a robust and real-time air pollutant forecasting system by exploiting a neural network. The proposed approach is implemented on a 24-month dataset from Seoul, Republic of Korea. The predicted results are cross-validated with the real dataset and compared with the state-of-the-art techniques to evaluate its robustness and performance. The proposed model outperforms SVM, SVM-Polynomial, ANN, and RF models with 60.17%, 68.99%, 14.6%, and 6.29%, respectively. The model performs SVM and SVM-Polynomial in predicting O3 by 78.04% and 83.79%, respectively. Overall performance of the model is measured in terms of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE).