• Title/Summary/Keyword: Air pressure variation

Search Result 375, Processing Time 0.025 seconds

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

A Study of Spray Characteristics of Injector on the Air-assisted Pressure Variation (보조 공기 압력 변화에 따른 인젝터의 분무 특성에 관한 연구)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.58-64
    • /
    • 1998
  • In the gasoline engine of fuel injection type, atomization of fuel droplet and its distribution has directly influenced the performance of engine and harmful emission. To investigate atomization characteristics of fuel spray, in this paper fuel spray of air-assisted injector is observed at the various initial conditions of ambient air temperature and air assisted pressure. Behavior of fuel spray is photographed with microscopic visualization system. The SMD of fuel droplet is measured with PMAS (Particle Motion Analysis System). The effect of air-assisted pressure and temperature of ambient air resulted in the decrement of SMD and its variation. Finally, It was found that It was found that from spray angle at the two-hole injector had measured $20{\pm}4$ degree the result of photographs by shadow graphy. The mean diameter of suns decreased and the of droplets increased with increasing the temperature in the spray fields by the results of PMAS measurement. It was found that the characteristics of sprays became finer by increasing the temperature of spray fields about 373K without the delivery of air-assistance.

  • PDF

Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface (에어댐의 높이가 차체 표면의 압력변화에 미치는 영향)

  • Park, Jong-Soo;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

A Study on The Estimation of Effective Bulk Modulus of Hydraulic Oil With Pressure Variation (압력변동에 따른 유압유의 유효체적탄성계수 측정에 대한 연구)

  • 이재천;정용승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.179-184
    • /
    • 2003
  • It has been recognized that the compressibility of hydraulic fluid, which is characterized by the value of its bulk modulus, heavily affects on the system behavior and performance. In practice, the value of the oil bulk modulus varies by the operational and structural characteristics of the hydraulic system. This study presents the theoretical derivation of the effective bulk modulus and describes an experimental impulse technique that allows accurate measurement of oil effective bulk modulus with pressure variation in a hydraulic system. Experimental and analytical results show that the value of the effective bulk modulus varies a lot in low pressure region by the effect of entrained air, while the effective bulk modulus can be estimated just using the oil and container bulk modulus on the other high pressure region.

Fundamental Experiments for Design of Air Inflating Apparatus of Air-Inflated Double-Layer Plastic Greenhouse (공기주입 이중피복 플라스틱온실의 공기주입장치 설계를 위한 기초실험)

  • Lee, H.W.;Nam, H.S.;Sim, S.Y.;Nam, S.W.;Kim, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.19-24
    • /
    • 2009
  • This study was conducted to provide fundamental data for design of air inflating apparatus of air-inflated double-layer plastic greenhouse. The variation of static pressure in air tube for different fans and filters, filtering performance for various kinds of filters and destruction phase of experimental greenhouse collapsed by excessive static pressure in air space were analyzed. The general type of forward centrifugal fan was recommended for inflating air space in air-inflated double-layer plastic greenhouse. The experimental greenhouse was collapsed down by excessive static pressure just like fallen by heavy snow load acting on it. The static pressure in air tube without filter decreased linearly as the number of outlet openings increased. But the pressure in air tube with filter declined quadratically, the decremental ratio diminished by the increase of outlet openings. The higher filtering efficiency and the greater decrements of static pressure in air tube, the larger capacity fan was required for maintaining proper static pressure in air space. Because the porosities of filter were blocked by dust as time goes by, the static pressure in air tube with filter decreased. The higher filtering efficiency, the less decremental ratio of static pressure in air tube as time passes by. Considering the filtering efficiency, decrement of static pressure and thickness of filter, the 5mm thickness filter of 75% efficiency was recommended for air inflating filter of air-inflated double-layer plastic greenhouse.

PORE PRESSURE AND EFFECTIVE STRESS IN THE SATURATED SAND-BED UNDER THE VARIATION OF WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.107-119
    • /
    • 2003
  • The behavior of pore pressure and effective stress in a highly saturated sand bed under variations in the water pressure in its surface were investigated to determine the mechanism of the collapse of hydraulic structures during flooding or when attacked by storm waves. The vertical, one-dimensional model was used as a basic model to clarify the effect of water pressure variation on only to the vertical direction. The theoretical results show that a sand bed under variations of water pressure is weakened by an increase in excess pore pressure and that under certain conditions the sand bed will liquefy. Although many factors related to water pressure variation and property of the material determine this phenomenon, the mist important factor seems to be the small amount of air present in the sand bed. The theoretical results reported are verified by experiments.

  • PDF

Cycle-to-Cycle Variations Under Cylinder- Pressure- Based Combustion Analysis in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1151-1158
    • /
    • 2000
  • Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. The burn rate analysis program was used here and the burn parameters were used to determine the variations in the input parameter-i. e., fuel, air, and residual mass. In this study, we investigated the relationship of indicated mean effective pressure (IMEP), coefficient of variation (COV) of IMEP, burn angles, and lowest normalized value (LNV) in a spark ignition engine in a view of cyclic variations.

  • PDF

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

A Study on the Design of Back Pressure for Automotive Scroll Compressor

  • Koo, In-Hwe;Lee, Geon-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The optimum design of back pressure chamber is one of the most important factors in designing scroll compressors because it has a great influence on the efficiency and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. The other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that can change back pressure without reassembling compressor. It makes possible to obtaining optimum back pressure. Then we designed an equipment that the back pressure control valve assembly could be independently tested with. Spring was redesigned to decrease stiffness variation. Also sealing mechanism of back pressure control valve was improved to more effective way. As a result, it was verified that in a real mode test back pressure variation could be retained in 2.3% with discharge pressure and operating frequency varied. In addition the integrated structure of back pressure control valve is expected to contribute to effective manufacturing process.