• Title/Summary/Keyword: Air pressure cylinder

Search Result 266, Processing Time 0.026 seconds

The misfire detection using the mean exhaust pressure gradient index (평균 배기 압력 구배 지수를 이용한 실화 검출)

  • Chung, Sung-Won;Sim, Kook-Sang;Kim, Se-Woong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • This paper proposes a method to detect the misfired cylinder using a new misfire detection index. The new method of misfired cylinder is a comparison of pressure gradient during the blowdown period of exhaust stroke. If a misfire occurs, the engine will he lost some power and consumes the more fuel and the torque will be unsteady. Most of all, the misfire affects a bad influence of the 3-way catalyst and emits unburned hydrocarbon in the air. To prevent these unusual phenomena and eliminate the factor of the environmental pollution, it is important to detect the misfired cylinder. To do the experiment, set up the assist device on the manifold. This assist device is not deformed for conventional exhaust manifold and installed in the end of the exhaust manifold. Experimental results showed that the method using the mean gradient pressure index is proven to be effective in the detection of misfired cylinder on gasoline engine regardless loads and revolutions of the engine.

  • PDF

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

Effects of gas pulsation in the suction line of a hermetic reciprocating compressor on th compressor performance (밀폐형 왕복동 압축기에서 흡입라인 가스맥동이 압축기 성능에 미치는 영향)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.404-409
    • /
    • 2007
  • For a hermetic reciprocating compressor, it has been known that the gas pulsation in the suction line affects the compressor performance, and suction muffler design has been focused on both of noise reduction and minimum pressure drop across the muffler. Some studies have been carried out on the mutual interaction between the gas pulsation and the cylinder pressure to investigate some supercharging effects, but their efforts were limited on rather simple geometries. In this paper, interaction of the gas pulsation in the compressor suction line with cylinder pressure via suction valve motion has been calculated; for the gas pulsation analysis, modeling of Helmholtz resonators in series was used, and for cylinder pressure calculation, energy equations was set up for the gas inside the cylinder. For demonstration of this calculation method, four different types of suction line configurations for a hermetic reciprocating compressor were compared in terms of compressor performance and gas pulsation level.

  • PDF

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF

Wave Energy Absorption by a Circular Cylinder Oscillating Water Column Device (원통형 진동수주 파력발전장치에 의한 파 에너지 흡수)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-18
    • /
    • 2002
  • In this paper, wave energy absorption of OWC(oscillating water column) device is analyzed. The analytic model consists of a partially immersed circular vertical cylinder open at its end and an air turbine connected with the air chamber. The boundary value problem is decomposed into scattering problem related to scattering by an incident wave in the absence of a pressure variation and radiation problem describing the flow due to an oscillating pressure in the absence of an incident wave. By invoking the continuity of an air flow inside the chamber, the oscillating pressure in a chamber is derived. With oscillating pressure, the mean power absorbed by OWC device and the capture width are obtained. In numerical calculation, the induced volume flux across the internal free surface of the chamber in the scattering and radiation problem and the maximum capture width are compared with various design parameters such as radius and submergence depth of chamber and wave conditions. The maximum capture width obtained by choosing the optimal value of turbine constant occurs at the first resonant mode (Helmholtz mode) among the natural frequencies of a circular cylinder chamber.

Case on the Death of Scuba Diver by Analyzing the Air in Nitrox Cylinder (Nitrox 공기통의 기체 분석에 의한 스쿠버다이버 사망원인 추정에 관한 사례연구)

  • Lee, Joon-Bae;You, Jae-Hoon;Shon, Shung-Kun;Sung, Tae-Myung;Paeng, Ki-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • Going underwater is supposed to begin with the history of human beings. At first it was confined to relatively shallow level, less than several meters by holding breath. Recently, deep level diving has been necessary for such purpose as construction, maritime salvage, military operations, research and sports by using SCUBA(self-contained underwater breathing apparatus) equipment. As one goes down into water, the pressure on the diver is increased due to water pressure with depth, usually 1 atm for each 10 m water level. In deep water, mixed gas or nitrox(EAN, enriched air nitrox) could be applied for the divers lest they should get disease due to high pressure. Of these, the former is usually composed of oxygen and inert gas like helium or hydrogen, the latter contains higher oxygen content than that in normal air in which the oxygen concentration is designated by the character "EAN" followed by vol. % of oxygen, for example, "EAN 40" contains 40% of oxygen. In this case, a victim was found at the 39 m below the sea surface breathing air and nitrox in cylinder wrongly marked as EAN 36, which was analyzed to contain 63% of oxygen by GC/TCD. The cause of death could not be exactly related with the oxygen content in the nitrox cylinder, because the accurate depth for the victim to dive was not known, even though the victim was just found at the depth of 39 m. However, the wrongly marked nitrox could be believed to be the main cause of the death at the depth unless there happened any other accident except that during diving.

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

Cycle-to-Cycle Variations Under Cylinder- Pressure- Based Combustion Analysis in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1151-1158
    • /
    • 2000
  • Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. The burn rate analysis program was used here and the burn parameters were used to determine the variations in the input parameter-i. e., fuel, air, and residual mass. In this study, we investigated the relationship of indicated mean effective pressure (IMEP), coefficient of variation (COV) of IMEP, burn angles, and lowest normalized value (LNV) in a spark ignition engine in a view of cyclic variations.

  • PDF

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

The Water Entry Fluid Load Experimental Analysis (입수 충격 하중에 관한 실험적 연구)

  • Jeong, Du-Jin;Lee, Hui-Seong;Gwon, Sun-Hong;Song, Gi-Jong;Jeong, Byeong-Hun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.183-186
    • /
    • 2003
  • This paper presents the results of slamming experiment using air pressure cylinder to increase the repeatability of the experiment. When it comes to the slamming experiment, the traditional way of doing it has been the free fall experiment. By adopting air pressure cylinder almost equal peak pressures were obtained with that of free fall experiment. Jet takes place when the wedge enters water. Slamming doesn't take place when Dead rise angle is more then 20 degrees.

  • PDF