• Title/Summary/Keyword: Air preheater

Search Result 35, Processing Time 0.025 seconds

A Study on Optimal Operation for Soot Blower of Power Plant (발전용 Soot Blower 최적운전에 관한 연구)

  • Kim, Sung-Ho;Jung, Hae-Won;Yook, Sim-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.541-543
    • /
    • 2004
  • An optimal soot blowing system has been developed for an optimal operation of power utility boilers by both minimization of the use of steam and the number of soot blowers worked during soot blowing. Traditionally, the soot blowing system has been operated manually by operators. However, it causes the reduction of power and thermal performance degradation because all soot blowers installed in the plant should be worked simultaneously even there are lots of tubes those are not contaminated by slagging or fouling. Heat transfer area is divided into four groups, furnace, convection area including superheater, reheater and economizer, and air preheater in the present study. The condition of cleanness of the tubes is calculated by several parameters obtained by sensors. Then, a part of soot blowers works automatically where boiler tubes are contaminated. This system has been applied in a practical power plant. Therefore, comparison has been done between this system and manual operation and the results are discussed.

  • PDF

Applicability to Engine Fuel of Low Caloric Synthetic Gas from Coal Gasification (석탄가스화기기로부터 발생된 저발열량 합성가스의 엔진연료 적용 연구)

  • 장준영;김태권;유영돈;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.595-600
    • /
    • 2003
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. The electrical system and others for the alternative fuel are also redesigned and replaced. From the results of engine performance data, we have demonstrated that the engine modified by using coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. This paper addresses the need to determine the practical potential for such a concept and to identify further research and development efforts that may be necessary.

  • PDF

Comparative Performance Analysis of Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Different Cell Inlet Preheating Methods (셀 입구 예열방법에 따른 가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능 비교 해석)

  • Yang Won Jun;Kim Jae Hwan;Kim Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.722-729
    • /
    • 2005
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range thus to reduce thermal stress inside the cell. Three different methods considered are (1) adopting a burner in front of the cell, (2) adopting a preheater (heat transfer from the main combustor) in front of the cell and (3) using recirculation of the cathode exit gas. For each configuration, analyses are carried out for two values of allowable maximum cell temperature difference. Performance characteristics of all cases are compared and design limitations are discussed. Relaxation of the cell temperature difference (larger difference) is proved to ensure higher efficiency. Recirculation of the cathode exit gas exhibits better performance than other methods and this advantage becomes more prominent as the constraint of the cell temperature difference becomes more severe (smaller temperature difference).

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

The Low $NO_{x}$ Characteristics of a Lean Premixed Gas Turbine Combustor (희박연소를 이용한 가스터빈 연소기의 저 $NO_{x}$ 특성)

  • Son, M.G.;Ahn, K.Y.;Kim, H.S.;Kim, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.66-70
    • /
    • 2001
  • The combustion characteristics have been investigated to develop the low $NO_{x}$ gas turbine combustor. The lean premixed combustion technology was applied to reduce the $NO_{x}$ emission. Also, the conventional combustor was designed and tested for the baseline of low $NO_{x}$ combustor performance. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of 500K were supplied to the combustor through the air preheater. The temperature and emissions of $NO_{x}$ and CO were measured at the exit of combustor. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The $NO_{x}$ was decreased with decreasing the equivalence ration. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.45. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The $NO_{x}$ was decreased slightly and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. The low $NO_{x}$ combustor has lower values of $NO_{x}$ and CO compared with conventional one. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

SCR facility design for the selective catalyst performance of mixed gas

  • Woohyeon, Hwang;Kyung-Ok, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, the design conditions and CFD analysis results are compared and reviewed in SCR that can optimally reduce nitrogen compounds. To this end, it was analyzed and compared using CFD to see if the design criteria were satisfied for the shell and tube areas of the boiler. In the SCR system, the analysis area is the gas/air heat exchanger on the shell side, and eight tubes of the gas/air heat exchanger on the tube side. Through CFD analysis, the gas velocity distribution on the primary catalyst side of the SCR system was designed to be 2.4%, and the NH3/NOx molar ratio distribution was 3.7%, which satisfied the design criteria. In addition, the uniformity of the temperature distribution was confirmed and the required condition of 260℃ or higher was satisfied. The angle of the gas entering the catalyst met the design conditions at 2.9 degrees, and the pressure loss that occurred also satisfied the design requirements. Through this CFD analysis, it was confirmed that it was designed and operated by satisfying the design conditions required for each area.

A Study on the Removal of Slagging and Fouling for an Optimal Operation of Power Utility Boilers (보일러 최적운전을 위한 슬래깅 및 파울링 제거 연구)

  • Yook, Sim-Kyun;Kim, Sung-Ho;Lee, Byeong-Eun;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1772-1780
    • /
    • 2003
  • An optimal soot blowing system has been developed for an optimal operation of power utility boilers by both minimization of the use of steam and the number of soot blowers worked during soot blowing. Traditionally, the soot blowing system has been operated manually by operators. However, it causes the reduction of power and thermal performance degradation because all soot blowers installed in the plant should be worked simultaneously even there are lots of tubes those are not contaminated by slagging or fouling. Heat transfer area is divided into four groups, furnace, convection area including superheater, reheater and economizer, and air preheater in the present study. The condition of cleanness of the tubes is calculated by several parameters obtained by sensors. Then, a part of soot blowers works automatically where boiler tubes are contaminated. This system has been applied in a practical power plant. Therefore, comparison has been done between this system and manual operation and the results are discussed.

Study on the characteristics of acid resistance and thermal shock for epoxy coatings (에폭시계 코팅재의 내산열충격 특성에 관한 연구)

  • Lee, Sang-Yeal;Yun, Byoung-Du
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.362-369
    • /
    • 2007
  • This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine (1kW급 스털링엔진 고온 열교환기의 Fin 형상 개선 효과 분석)

  • Ahn, Joon;Kim, Seok Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.545-552
    • /
    • 2017
  • In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.