• 제목/요약/키워드: Air pollutants$PM_{10}$

검색결과 422건 처리시간 0.024초

플라즈마 이온 방식의 공기정화기를 이용한 돈사내 공기오염물질 저감 효과 (Reduction Effect of Airborne Pollutants in Pig Building by Air Cleaner Operated with Plasma Ion)

  • 김윤신;김기연;조만수;고문석;고한종;정진원;오미석;윤백;김중호
    • 한국환경보건학회지
    • /
    • 제36권4호
    • /
    • pp.306-312
    • /
    • 2010
  • This field study was performed to evaluate the efficiency of a plasma ion-operated air cleaner in temporal reduction of airborne pollutants emitted from a pig housing facility. In the case of gaseous pollutants, the plasma ion air cleaner was not effective in reducing levels of ammonia, hydrogen sulfide, nitrogen dioxide, or sulfur dioxide (p>0.05). In the case of particulate pollutants, however, the air cleaner was effective in reducing levels of particulate matter ($PM_{2.5}$ and $PM_1$) by 79(${\pm}6.1$) and 78(${\pm}3.0$)%, respectively. Unlike the case of these fine particle fractions, the reduction of total suspended particles (TSP) and $PM_{10}$ following treatment was almost negligible. In the case of biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi were relatively low at 22(${\pm}6.6$) and 25(${\pm}8.7$)%, respectively. Taken together, these results indicate that in terms of air pollutants released from this pig housing facility, the plasma ion air cleaner was primarily effective in reducing levels of $PM_{2.5}$ and $PM_1$.

부산시 항만 및 산단 인근 주거지역 대기질 모니터링과 분기별 특성확인 (Air Quality Monitoring in Residential Areas near Ports and Industrial Complexes in Busan)

  • 주현지;이승호;김민정;이가빈;홍영습
    • 한국환경보건학회지
    • /
    • 제50권3호
    • /
    • pp.181-190
    • /
    • 2024
  • Background: Air pollutants have been reported to have harmful effects on human health. Busan is a vulnerable area in terms of air quality due to the installation of various industrial complexes, particularly the port industry. However there is limited research data on the ambient air quality of residential areas near ports and industrial complexes. Objectives: This study aimed to determine the quarterly levels of air pollutants near industrial complexes and ports and to identify trends and characteristics of air pollutant exceedances. Methods: Air measurements were conducted quarterly. The measured air pollutants included O3, SO2, CO, NO2, PM10, and PM2.5. PM10 and PM2.5 were measured using BAM-1020 equipment, while O3, SO2, CO, and NO2 were measured using AP-370 Series equipment. The quarterly concentration levels of air pollutants were determined, and the influence of precipitation and commuting hours on fine particulate matter was examined. Analysis of variance (ANOVA) was conducted to determine if there was significance between the concentrations of fine particulate matter during commuting hours and non-commuting hours. Results: The concentrations of air pollutants were generally higher in the first and second quarters. Furthermore, the concentrations of PM10 and PM2.5 tended to decrease continuously following consecutive rainfall, with concentrations at the end of rainfall periods lower than those observed at the beginning. The frequency of exceeding average concentrations of PM10 and PM2.5 was higher on weekdays. Moreover, the average concentrations of PM10 and PM2.5 during weekday commuting hours were higher compared to non-commuting hours. Conclusions: The concentrations of air pollutants in the survey area were found to be higher than the overall average in Busan. Based on this study, continuous air quality monitoring is necessary for residential areas near industrial complexes and ports. For further research, health biomonitoring of residents in these areas should be conducted to assess their exposure levels.

황사현상에 의한 대기오염물질의 농도분포 특성에 관한 연구 (A Study on the Concentration Distribution Characteristics of Air Pollutants by Yellow Sand Phenomenon)

  • 이용기;김종찬;최승석;임홍빈;최양희;이수문
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.71-78
    • /
    • 2002
  • This study was conducted to evaluate the concentration distribution characteristics of air pollutants by the yellow sand from China. The concentrations and chemical properties of FPM contained in the yellow sand were compared with those of air pollutants when having no yellow sand in order to estimate the variation characteristics and the originated source of air pollutants moved by yellow sand. The concentrations of PM-2.5 and PM-10 contained in the yellow sand showed an increase of 2.3 to 2.7 times than usual, and the concentrations of NO2 and SO2 in the gaseous pollutants showed an increase of about 1.6 times by yellow sand, and thus the air contamination was much influenced by yellow sand phenomenon. The concentrations of inorganic elements contained in FPM from the yellow sand showed a higher concentration variation in the order of Al>Mg>Zn>Pb than usual. The concentration coefficient of air aerosol during the yellow sand period showed that Na, K, Ca, Mg and Fe were originated from natural source, and Pb, Cr, Cd, Cu and Zn were originated from artificial source for inorganic elements. The correlation analysis between FPM and inorganic elements showed in the descending order of Al>K>Pb>Mg, and thus the deposited amount of Pb was influenced by that of yellow sand. The average concentrations of PM-10 measured during the yellow sand period exceeded the Korea Air Environmental Standard and showed a excess rate of 3.4 times in the maximum but the average concentrations of PM-2.5 showed within the United States Air Environmental Standard.

Assessment and comparison of three different air quality indices in China

  • Li, Youping;Tang, Ya;Fan, Zhongyu;Zhou, Hong;Yang, Zhengzheng
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.21-27
    • /
    • 2018
  • Air pollution index (API) is used in Mainland China and includes only $SO_2$, $NO_2$ and $PM_{10}$. In 2016, air quality index (AQI) replaced API. AQI contains three more air pollutants (CO, $O_3$ and $PM_{2.5}$). Both the indices emphasize on the effect of a single pollutant, whereas the contributions of all other pollutants are ignored. Therefore, in the present work, a novel air quality index (NAQI), which emphasizes on all air pollutants, has been introduced for the first time. The results showed that there were 19 d (5.2%) in API, 28 d (7.7%) in AQI and 183 d (50.1%) in NAQI when the indices were more than 100. In API, $PM_{10}$ and $SO_2$ were regarded as the primary pollutants, whereas all five air pollutants in AQI were regarded as primary. Furthermore, four air pollutants (other than the CO) in NAQI were regarded as primary pollutants. $PM_{10}$, as being the primary pollutant, contributed greatly in these air quality indices, and accounted for 51.2% (API), 37.0% (AQI) and 52.6% (NAQI). The results also showed that particulate matter pollution was significantly high in Luzhou, where stricter pollution control measures should be implemented.

태풍 내습 시 강수에 의한 대기오염물질 (PM10, NO2, CO, SO2)의 농도 변화 분석 (Effect of the Rainfall during Typhoon Periods on the Variation of Concentration of Ambient Air Pollutants (PM10, NO2, CO, SO2) in the Korean Peninsula)

  • 안숙희;박소연;김정윤;김백조
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.128-138
    • /
    • 2014
  • This study has analyzed the concentration variation of four air pollutants ($PM_{10}$, $NO_2$, CO, and $SO_2$) during the typhoon periods over 10 years (2002~2011). In this study, 10 typhoon events which had rainfalls in Korean Peninsula were selected during the study period. The analysis was performed using the observation data of both the air pollutants and rainfall. In order to examine and compare the concentrations of the air pollutants between normal periods and typhoon periods, we have obtained monthly average concentrations from July to September and daily average concentrations during typhoon periods. For the period from July to September, 34% of the total rainfalls can be explained by typhoons, and the concentration of air pollutants during the typhoon period was lower than the normal period. In addition, the concentration variations of the pollutants during the typhoon period were analyzed according to two categories: differences in the concentrations between the day before and the day of the typhoon (Case 1) and between the day before and after the typhoon (Case 2). The results indicated that the reduction rate of $PM_{10}$, $NO_2$, CO, and $SO_2$ was 30.1%, 17.9%, 11.6%, 9.7% (Case 1) and 22.8%, 21.0%, 9.0%, 8.0% (Case 2), respectively. This result suggested that air quality was significantly improved during the typhoon period than after the typhoon period by the rainfall.

서울시의 대중교통수단내 실내공기질에 대한 연구 (An Investigation of Indoor Air Quality of Public Transportation System in Seoul City)

  • 김윤신;홍승철;전준민
    • 한국환경보건학회지
    • /
    • 제20권1호
    • /
    • pp.28-38
    • /
    • 1994
  • The objective of this study were to measure concentrations of indoor pollutants in public transportation systems to provide importance of indoor air quality in transportation systems to policy makers. Indoor air quality of the pollutants (CO, CO$_2$, PM-10) and environmental sources (temperature, humidity) were measured at subway, seat-type bus, and city-type bus in the Seoul area from April to September 1992. The same pollutants and environmental sources were also measured at selected bus stops and subway stations during October 1991-September 1992. The mean concentrations of indoor pollutants in the public transportation systems were showed 115.5 $\mu$g/m$^3$ in PM-10, 6.8 ppm in CO, and 2167.9 ppm in CO$_2$, respectively. The mean values of PM-10 and CO showed below the U.S. 24 hour standard value of PM-10 and the Korea ambient CO standard, while the mean concentrations of CO$_2$ exceeded the Korea CO$_2$ standard. The highest levels of indoor concentration at public transportation systems were PM-10 of 134.6 $\mu$g/m$^3$ in the subway, CO of 8.9 ppm in the city-type bus, CO$_2$ of 2,511.1ppm in seat-type bus, respectively. The results showed that indoor air quality in bus and subway seemed likely to be affected by number of passengers and outdoor air infiltrated from exhausted gases of automobiles.

  • PDF

동아시아 지역에서 광역적 대기오염의 이동: 위성과 지상 관측 (Large-Scale Transport of Air Pollutants in the East Asian Region: Satellite and Ground Observations)

  • 김학성;정용승
    • 한국지구과학회지
    • /
    • 제28권1호
    • /
    • pp.123-135
    • /
    • 2007
  • 동아시아에서 광역적인 대기오염 이동과 한반도 유입을 인공위성과 지상 관측을 통해 5개의 사례를 분석하였다. 이 사례들은 주로 중국 대륙의 도시와 산업지대에서 배출된 오염물질들이 황해를 지나 한반도에 상륙 및 통과하는 광역적인 대기오염 이동이다. NOAA인공위성 관측 자료의 분석은 가시영역과 적외선 영역의 3개 채널을 합성하여 영상을 만들고, 황해 위에서 대기오염의 분포와 이동을 구별해 낼 수 있었다. 또한 청원의 배경관측지점에서 대기오염의 지상 관측 자료는 인공위성 관측 자료와 비교하여 검증하는데 매우 가치가 있었다. 특히, 광역적 대기오염의 이동 사례에서는 $PM_{10}$$PM_{2.5}$ 농도의 차이가 적으면서, $PM_{2.5}$값이 높게 증가한다. 그러나 황사의 경우는 $PM_{10}$ 농도가 훨씬 높게 관측되어 $PM_{2.5}$와의 차이가 매우 큼이 특징적이다. 2006년 1월 27일의 사례에서는 중국 발원의 광역적 대기오염이 한반도의 중부 및 남서지역으로의 유입을 인공위성뿐 아니라 여러 지상관측소들에서 순차적으로 관측할 수 있었다. 북북서 기류가 제주도 한라산을 넘어서 풍하측 멀리까지 구름을 소산시키고 대기오염을 감소시키며, 카르만 소용돌이를 만들고 있었다.

확률론적 모의실험을 이용한 공기청정기의 실내공기중 PM10과 $NO_2$ 제거효율에 관한 연구 (Efficiency of Removal for PM10 and $NO_2$ by Air Cleaner in Residential Indoor Environment with Monte-Carlo Simulation)

  • 이철민;김윤신;이태형;김종철;김중호
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.221-229
    • /
    • 2004
  • We estimated decreasing rate of indoor air pollutants which are PM10 and $NO_2$ by the air cleaner in indoor environment. This study respectively examined concentration of PM10 and $NO_2$ two times in 34 sites located in Seoul and Kyung-gi Do from April to September in 2003. Sectional period was respectively divided for operating the air cleaner and non-operating the air cleaner. Moreover, questionnaire was executed to grasp physical characteristic of objective building and residential characteristic of residents by using method of self-entry. There was a trend that concentration of PM10 and $NO_2$ separated number of residents during operating period respectively decreased among indoor air. According to the existence of smoker in indoor, both concentration of PM10 and $NO_2$ during operating period decreased in each case, and according to existence of pets, both cases decreased concentration of pollutants by operating the air cleaner. We used Monte-Calro simulation to remove uncertainty and identify efficiency of eliminated pollutants such as PM10 and $NO_2$ by the air cleaner. Average efficiency of removal for PM10 and $NO_2$ were 61.84${\pm}$23.04% and 48.67${\pm}$18.03% respectively.

대기오염물질과 환경성 질환 관련 의료이용률과의 연관성 - 일반거주지역을 대상으로 - (Association between Air Pollutant Levels and Medical Usage Rates of Environmental Disease in a General Residential Area)

  • 박동윤;이채관
    • 한국환경보건학회지
    • /
    • 제47권3호
    • /
    • pp.279-291
    • /
    • 2021
  • Objectives: This study investigated the association between air pollutant levels and medical usage rates for environmental disease in a general residential area during the period 2015-2017. Methods: Air pollutant (PM10, PM2.5, SO2, NO2, CO, O3) data were collected from Air-Korea. Medical usage data on environmental disease (asthma, allergic rhinitis, atopic dermatitis) for the period 2015-2017 in a general residential area in Gyeongsangnam-do Province were provided by the National Health Insurance Corporation. Pearson correlation analysis and multiple regression analysis were conducted to investigate the association between air pollutant levels and medical usage rates (SAS 9.4). In the multiple regression analysis, environmental disease was set as the dependent variable and air pollutants were set as independent variables and analyzed using the General Linear Model. Results: Except for PM2.5, the average concentration of air pollutants in the surveyed area was below than the air environment standards of Korea. NO2 was higher than Korea's national average, but CO was similar. The others were lower than the Korea's national average. The daily medical usage rates for environmental disease were 1.38‰ for asthma, 9.90‰ for allergic rhinitis, and 0.32‰ for atopic dermatitis. As a result of correlation analysis, PM10 and SO2, NO2 and CO were significantly correlated with asthma, PM10 and NO2 and CO were correlated with allergic rhinitis, and PM10 and PM2.5, SO2, NO2 and CO were correlated with atopic dermatitis. As a result of multiple regression analysis, PM10 and SO2 were found to have a higher effect on asthma, PM10 and NO2 on allergic rhinitis, and SO2 and NO2 on atopic dermatitis, compared to other air pollutants. Conclusion: According to these results, air pollutants such as PM10 and SO2 and NO2 were associated with the medical usage rates of environmental disease even in relatively low concentrations. Therefore, continuous monitoring will be required for general residential areas.

Effect of regional climatic conditions, air pollutants, and season on the occurrence and severity of injury in trauma patients

  • ;;;;;김훈
    • 대한응급의학회지
    • /
    • 제29권6호
    • /
    • pp.603-615
    • /
    • 2018
  • Objective: We analyzed the association between regional weather and temporal changes on the daily occurrence of trauma emergencies and their severity. Methods: In this cross-sectional prospective study, we investigated daily atmospheric patterns in trauma episodes in 1,344 patients in Cheongju city, South Korea, from January 2016 to December 2016 and analyzed the association of trauma occurrence and Injury Severity Scores (ISS) with weather conditions on a daily scale. Results: The mean age of trauma patients was $53.0{\pm}23.8years$ and average ISS was $9.0{\pm}2.0$. Incidence of trauma was positively correlated with average temperature (r=0.512, P<0.001) and atmospheric pressure (r=0.332, P=0.010) and negatively correlated with air pollutants (particulate matter less than $2.5{\mu}m^3$ [PM2.5], r=-0.629, P<0.001; particulate matter less than $10{\mu}m^3$ [PM10], r=-0.679, P<0.001). ISS was not significantly correlated with climate parameters and air pollutants, and variability was observed in the frequency and severity of trauma by time of day (highest occurrence, 16-20 pm; highest ISS, 4-8 am), day of the week (highest occurrence and highest ISS, Saturday), month of the year (highest occurrence, July; highest ISS, November), and season (highest incidence, summer; highest ISS, autumn). Conclusion: The study shows a positive relationship between trauma occurrence and specific weather conditions, such as atmospheric temperature and pressure. There was a negative relationship between concentrations of PM2.5 or PM10, and trauma occurrence. However, no correlation was observed between weather conditions or the concentrations of air pollutants and ISS. In addition, seasonal, circaseptan, and circadian variations exist in trauma occurrence and severity. Thus, we suggest that evaluation of a larger, population-based data set is needed to further investigate and confirm these relationships.