• Title/Summary/Keyword: Air plane

Search Result 476, Processing Time 0.029 seconds

A Scalable Heuristic for Pickup-and-Delivery of Splittable Loads and Its Application to Military Cargo-Plane Routing

  • Park, Myoung-Ju;Lee, Moon-Gul
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • This paper is motivated by a military cargo-plane routing problem which is a pickup-and-delivery problem in which load splits and node revisits are allowed (PDPLS). Although this recent evolution of a VRP-model enhances the efficiency of routing, a solution method is more of a challenge since the node revisits entail closed walks in modeling vehicle routes. For such a case, even a compact IP-formulation is not available and an effective method had been lacking until Nowak et al. (2008b) proposed a heuristic based on a tabu search. Their method provides very reasonable solu-tions as demonstrated by the experiments not only in their paper (Nowak et al., 2008b) but also in ours. However, the computation time seems intensive especially for the class of problems with dynamic transportation requests, including the military cargo-plane routing problem. This paper proposes a more scalable algorithm hybridizing a tabu search for pricing subproblem paused as a single-vehicle routing problem, with a column generation approach based on Dantzig-Wolfe decomposition. As tested on a wide variety of instances, our algorithm produces, in average, a solution of an equiva-lent quality in 10~20% of the computation time of the previous method.

Study of Development of Image Processing Algorithm for Measurement of Out of Plane Deformation Using the Shearography (전단간섭계를 이용한 내부 결함의 면외 변위 측정을 위한 화상처리 알고리즘 개선에 관한 연구)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Kim, Sung Jong;Park, Jong Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • The measuring of internal defects of objects using the shearography has many advantages. It is a non-contact and non-destructive method and It has a real time measurement speed and no constraints of object shape. Compared to ESPI(Electronic Speckle Pattern Interferometry), Shearography has a very low error rate by vibration and air turbulence. So shearography provides possibilities of industrial application. In this paper, Image processing algorithm that is measurement of out-of-plane deformation using the shearography is proposed by developed using the LabVIEW 2010 and measurement result of out-of-plane ESPI and Shearography are compared quantitatively.

A study on the noise reduction of practical duct system with the air cavity (공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구)

  • Kim, Chan-Mook;Lee, Doo-Ho;Bahng, Keuk-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer (바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구)

  • Park, Deok-Bae;Hur, Jin-Huek;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF

Study on the Effect of Air Circulator on Temperature Distribution in an Oyster Mushroom Farm

  • Jeong, Won Geun;Lim, Hack Kyu;Kim, Tae Han
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • Purpose: Recently, domestic and abroad consumption of mushroom has been increasing. Especially, oyster mushroom has been the most consumed product, sharing one third of the mushroom market. The air temperature differences between relative positions of the mushroom farms were needs to be minimal. However, in reality, the air temperature differences ranged from 2 to $5^{\circ}C$. Because of this, the mushrooms are non-uniform growth as well as decrease in both quality and quantity. Although air circulators have been employed by oyster mushroom farms to minimize air temperature differences, no experiments have been performed to illustrate the effect of the air circulators. Methods: This experiment is designed to analyze the effect of the air circulation by constructing a prototype air circulator and measuring the air temperature when the circulator was position at different heights (50 cm, 150 cm, 200 cm) from the floor in the center. Result: The horizontal plane air temperature of the first growing bed when the air circulator was installed 50cm above the floor in the center, once not using the air circulators and the other time using the air circulators, yielded the air temperature differences of $8.6^{\circ}C$ and $1.8^{\circ}C$ and deviations of 2.82 and 0.60, respectively. The third growing bed's air temperature differences were $10.0^{\circ}C$, $1.6^{\circ}C$ and deviations 3.28, 0.64, each respectively. These outcomes proved that the use of air circulators minimized the air temperature difference and deviation. The use of air circulators helped minimize the air temperature differences and the derivations in oyster mushroom farm. Conclusion: The use of air circulators helped balance the air temperature distribution in oyster mushroom farm.

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

Optimal Mission Design of the Supersonic Air-launching Rocket (초음속 공중발사로켓의 임무형상 최적설계)

  • Choi, Youngchang;Lee, Jaewoo;Byun, Yunghwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • Design and optimization study has been performed to obtain a supersonic air.launching mission for the nanosat launcher. Given mission is to launch 10kg payload to target orbit of $700km{\times}700km$. Additional design constraints are imposed by the mother plane. After the required velocity is obtained, the stag ing optimization is carried out. Serial analyses for the propulsion system and aerodynamics are performed then, the rocket trajectory optimization has been carried out. After several mission design and optimization iterations, the optimized mission which satisfies the mission target is obtained. Total weight of the three-staged air-launching rocket is 1231.4kg and the payload weight is 10 kg.

  • PDF

Flow Analysis due to the Configuration of Automotive Spoiler (자동차 스포일러의 형상에 따른 유동해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.677-683
    • /
    • 2016
  • In this study, the pressures due to air resistances on the models of 1, 2, 3 and 4 as the automotive bodies grafted on various spoilers are investigated through the flow analysis. Model 1 has the flat type and model 2 has the shape that a flat plane is projected. Model 3 is attached with the slanted plate and model 4 has the shape that two slanted plates are installed on both sides. At the flow streams on the models of 1, 2, 3 and 4, the flow velocities are shown to become highest above the roofs of automotive bodies. The maximum flow velocities are also shown at the beginning points at the roofs of car bodies on the side planes of automotive bodies. The maximum pressures of 102,500 to 102,553 Pa as air resistances are shown at the bumpers of the front car bodies. The flow velocities on the inlet and middle planes become nearly same at the models of 1, 2, 3 and 4. But these velocities on the inlet plane at model 2 projected with the spoiler of flat plate become lower than the models of 1, 3 and 4. The air streams throughout the models become uniform at all models. The flow stream is shown most uniformly at model 2 projected with the spoiler of flat plate. But the flow stream is shown most irregularly at model 3 projected with the spoiler of slanting plate. By using the result of this flow analysis, it is thought to reduce the power of car effectively in driving by changing the configuration of automotive spoiler.

Adequate Excessive Air Ratio for The Various Blended Coal at a USC Boiler (USC 보일러에서 혼합연료별 적정과잉공기비)

  • Park, Jin-Chul;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.2
    • /
    • pp.44-51
    • /
    • 2011
  • Given the fact that the entire bituminous coal used for a boiler is imported, the supply of coal is often affected by the rise of international coal price. Moreover, coal suppliers have been diversified due to the competition among power generation companies for reducing costs and inexpensive sub-bituminous coal is used. As a result, boilers combustion conditions have been deviated from the initial boiler design. This requires the selection of adequate excessive air ratio for different combustion conditions to enhance the efficiency of boiler operation. The boiler efficiency has been identified through an examination on the change of excessive air ratio by mixed fuel in unit 8 of Dangjin power plant complex. In addition, an excessive air ratio was calculated based on the examination result. According to the study result, the adequate excessive air ratio was 13% when Macquarie and Powder river were mixed at a ratio of 5:5 and when Sonoma and Megaprima persada were mixed at a ratio of 5:5. When BHP Billiton and Powder river were mixed at a ratio of 4:6 and Centennial and Batubara were mixed at a ratio of 3:7, the adequate excessive air ratio was 11%.

  • PDF