• Title/Summary/Keyword: Air monitoring sites

Search Result 151, Processing Time 0.028 seconds

Welding Fume and Metals Exposure Assessment among Construction Welders (건설현장 용접직종별 용접흄 및 금속류 노출 실태)

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.147-158
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the assessment of exposure to welding fume and heavy metals among construction welders. Methods: Activity-specific personal air samplings(n=206) were carried out at construction sites of three apartment, two office buildings, and two plant buildings using PVC(poly vinyl chloride) filters with personal air samplers. The concentration of fumes and heavy metals were evaluated for five different types of construction welding jobs: general building pipefitter, chemical plant pipefitter, boiler maker, ironworker, metal finishing welder. Results: The concentration of welding fumes was highest among general building pipefitters($4.753mg/m^3$) followed by ironworkers($3.765mg/m^3$), boilermakers($1.384mg/m^3$), metal finishing welders($0.783mg/m^3$), chemical pipefitters($0.710mg/m^3$). Among the different types of welding methods, the concentration of welding fumes was highest with the $CO_2$ welding method($2.08mg/m^3$) followed by SMAW(shield metal arc welding, $1.54mg/m^3$) and TIG(tungsten inert gas, $0.70mg/m^3$). Among the different types of workplace, the concentration of welding fumes was highest in underground workplaces($1.97mg/m^3$) followed by outdoor($0.93mg/m^3$) and indoor(wall opening as $0.87mg/m^3$). Specifically comparing the workplaces of general building welders, the concentration of welding fumes was highest in underground workplaces($7.75mg/m^3$) followed by indoor(wall opening as $2.15mg/m^3$). Conclusions: It was found that construction welders experience a risk of expose to welding hazards at a level exceeding the exposure limits. In particular, for high-risk welding jobs such as general building pipefitters and ironworkers, underground welding work and $CO_2$ welding operations require special occupational health management regarding the use of air supply and exhaust equipment and special safety and health education and fume mask are necessary. In addition, there is a need to establish construction work monitoring systems, health planning and management practices.

Lung cancer, chronic obstructive pulmonary disease and air pollution (대기오염에 의한 폐암 및 만성폐색성호흡기질환 -개인 흡연력을 보정한 만성건강영향평가-)

  • Sung, Joo-Hon;Cho, Soo-Hun;Kang, Dae-Hee;Yoo, Keun-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.585-598
    • /
    • 1997
  • Background : Although there are growing concerns about the adverse health effect of air pollution, not much evidence on health effect of current air pollution level had been accumulated yet in Korea. This study was designed to evaluate the chronic health effect of ai. pollution using Korean Medical Insurance Corporation (KMIC) data and air quality data. Medical insurance data in Korea have some drawback in accuracy, but they do have some strength especially in their national coverage, in having unified ID system and individual information which enables various data linkage and chronic health effect study. Method : This study utilized the data of Korean Environmental Surveillance System Study (Surveillance Study), which consist of asthma, acute bronchitis, chronic obstructive pulmonary diseases (COPD), cardiovascular diseases (congestive heart failure and ischemic heart disease), all cancers, accidents and congenital anomaly, i. e., mainly potential environmental diseases. We reconstructed a nested case-control study wit5h Surveillance Study data and air pollution data in Korea. Among 1,037,210 insured who completed? questionnaire and physical examination in 1992, disease free (for chronic respiratory disease and cancer) persons, between the age of 35-64 with smoking status information were selected to reconstruct cohort of 564,991 persons. The cohort was followed-up to 1995 (1992-5) and the subjects who had the diseases in Surveillance Study were selected. Finally, the patients, with address information and available air pollution data, left to be 'final subjects' Cases were defined to all lung cancer cases (424) and COPD admission cases (89), while control groups are determined to all other patients than two case groups among 'final subjects'. That is, cases are putative chronic environmental diseases, while controls are mainly acute environmental diseases. for exposure, Air quality data in 73 monitoring sites between 1991 - 1993 were analyzed to surrogate air pollution exposure level of located areas (58 areas). Five major air pollutants data, TSP, $O_3,\;SO_2$, CO, NOx was available and the area means were applied to the residents of the local area. 3-year arithmetic mean value, the counts of days violating both long-term and shot-term standards during the period were used as indices of exposure. Multiple logistic regression model was applied. All analyses were performed adjusting for current and past smoking history, age, gender. Results : Plain arithmetic means of pollutants level did not succeed in revealing any relation to the risk of lung cancer or COPD, while the cumulative counts of non-at-tainment days did. All pollutants indices failed to show significant positive findings with COPD excess. Lung cancer risks were significantly and consistently associated with the increase of $O_3$ and CO exceedance counts (to corrected error level -0.017) and less strongly and consistently with $SO_2$ and TSP. $SO_2$ and TSP showed weaker and less consistent relationship. $O_3$ and CO were estimated to increase the risks of lung cancer by 2.04 and 1.46 respectively, the maximal probable risks, derived from comparing more polluted area (95%) with cleaner area (5%). Conclusions : Although not decisive due to potential misclassication of exposure, these results wert drawn by relatively conservative interpretation, and could be used as an evidence of chronic health effect especially for lung cancer. $O_3$ might be a candidate for promoter of lung cancer, while CO should be considered as surrogated measure of motor vehicle emissions. The control selection in this study could have been less appropriate for COPD, and further evaluation with another setting might be necessary.

  • PDF

Ozone Pollution Patterns and the Relation to Meteorological Conditions in the Greater Seoul Area (수도권지역 오존오염 패턴과 기상학적 특성)

  • Oh In-Bo;Kim Yoo-Keun;Hwang Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.357-365
    • /
    • 2005
  • The typical patterns of surface $O_3$ pollution and their dependence on meteorology were studied in the Greater Seoul Area (GSA) during warm season (April-September) from 1998 to 2002. In order to classify the $O_3$ pollution patterns, two-stage (average linkage then k-means) clustering technique was employed based on daily maximum $O_3$ concentrations obtained from 53 monitoring sites during high $O_3$ events (118 days). The clustering technique identified four statistically distinct $O_3$ pollution patterns representing the different horizontal distributions and levels of $O_3$ in GSA. The prevailed pattern (93 days, $49.5\%$) distinctly showed the gradient of $49.5\%$ concentrations going from west to east in GSA. Very high $49.5\%$ concentrations throughout GSA (24 days, $12.8\%$) were also found as a significant pattern of severe $O_3$ pollution. In order to understand the characteristics of $O_3$ pollution patterns, the relationship between $O_3$ pollution patterns and meteorological conditions were analyzed using both synoptic charts and surface/upper air data. Each pattern was closely associated with surface wind interacted with synoptic background flow allowing to transport and accumulate $O_3$ and its precursor. In particular, the timing and inland penetration of sea-breeze were apparently found to play very important role in determining $O_3$ distributions.

The Effect of Platform Screen Doors on PM10 Levels in a Subway Station and a Trial to Reduce PM10 in Tunnels

  • Son, Youn-Suk;Salama, Amgad;Jeong, Hye-Seon;Kim, Suhyang;Jeong, Jin-Ho;Lee, Jaihyo;SunWoo, Young;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.38-47
    • /
    • 2013
  • $PM_{10}$ concentrations were measured at four monitoring sites at the Daechaung station of the Seoul subway. The four locations included two tunnels, a platform, and a waiting room. The outside site of the subway was also monitored for comparison purposes. In addition, the effect of the platform screen doors (PSDs) recently installed to isolate the $PM_{10}$ in a platform from a tunnel were evaluated, and a comparison between $PM_{10}$ levels during rush and non-rush hours was performed. It was observed that $PM_{10}$ levels in the tunnels were generally higher than those in the other locations. This might be associated with the generation of $PM_{10}$ within the tunnel due to the train braking and wear of the subway lines with the motion of the trains, which promotes the mixing and suspension of particulate matter. During this tunnel study, it was observed that the particle size of $PM_{10}$ ranged from 1.8 to 5.6 ${\mu}m$. It was revealed that the $PM_{10}$ levels in the tunnels were significantly increased by the PSDs, while those in the platform and waiting room decreased. As a result, in order to estimate the effect of ventilation system on $PM_{10}$ levels in the tunnels, fans with inverters were operated. It was found that the concentration of $PM_{10}$ was below 150 ${\mu}g/m^3$ when the air flow rate into a tunnel was approximately 210,000-216,000 CMH.

Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area (부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성)

  • Kang, Nayeon;An, Joon Geon;Lee, Seon-Eun;Hyun, Sangmin
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.845-861
    • /
    • 2021
  • This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.

Study on the Methods of Detection and Analysis for Responding Inorganic Acids Spill (무기산 누출 사고 대응을 위한 탐지·분석 방법 연구)

  • Lee, Jin Seon;Jung, Mi Suk;Kim, Ki Joon;Ahn, Sung Young;Yoon, Young Sam;Yoon, Junheon
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • There have been frequent chemical leaks over the past 10 years. Particularly, inorganic acids like sulfuric acid, nitric acid, and hydrogen chloride take up 37 % of the total chemical accidents which took place for the past 10 years. When an acid chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, most of the acid-based chemicals, detecting and analysis methods have not been settled considering the frequency of accidents. In this study, we investigated detection and analysis methods to quickly analyze accident sites and evaluate the impacts on environments. Reviewing local and international test analysis methods of acids suggested that nitric acid, sulfuric acid, hydrogen chloride and hydrogen fluoride can be analyzed with IC. It was also found that UV is better for the analysis of hydrogen fluoride and GC/MS for acrylic acid. The analytical methods suggested in the official test methods basically have limitations of consuming much time at stages of preparation and analysis. Considering prompt responses to chemical accidents, further studies should be done to compare the applicability of rapid monitoring methods such as FT-IR, IMR-MS and SIFT-MS.

Impacts of Unsystematic Solid Waste Dumping on Soil Properties and Climate Change

  • Benish ZAHRA;Farida BEGUM;Woo-Taeg KWON;Seung-Jun WOO;Min-Jae JUNG
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.31-42
    • /
    • 2024
  • Purpose: Open-air dumping is a significant problem in Gilgit City, with limited research analyzing waste generation and its physicochemical impact on the soil. This study aimed to evaluate the effects of open dumping on soil properties and compare them with a controlled site. Research Design, data, and Methodology: Using ANOVA, the study found significant differences in electrical conductivity (EC), soil organic matter (SOM), soil organic carbon (SOC), sand, silt, and clay between the two sites, except for pH. Pearson correlation revealed that pH negatively correlated with EC, sand, and silt, but positively with SOM, SOC, and clay. The control site's mean EC was 6.06 mS/m, whereas the dumping site recorded 8.5 mS/m. EC is inversely related to SOM, SOC, silt, and clay, but directly to sand. SOC and SOM values varied significantly, with notable differences in soil texture components like clay and silt. Results: The research highlights the detrimental effects of unsystematic waste dumping on soil health and its contribution to greenhouse gas emissions, particularly methane, which exacerbates climate change. Conclusion: The study concluded that waste deposition and decomposition significantly impact EC, SOM, SOC, and soil texture, though pH remains unchanged. The unsystematic dumping of solid waste contributes to climate change through methane production, a potent greenhouse gas. To mitigate these impacts, the study recommends regular monitoring, waste prevention, recycling strategies, and continuous training for stakeholders to achieve sustainable development.

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Concentration Levels and Distribution Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) at Ambient Air in Industrial Complex Area (공단지역 대기 중 다환방향족탄화수소화합물(PAHs)의 농도수준 및 분포특성)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Cho, Sang-Won;Ok, Gon;Shon, Byung-Hyun;Lee, Kwan;Lim, Hyun-Sul
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The purpose of this study was to investigate the concentration levels, distribution characteristics and blood concentration of Polycyclic Aromatic Hydrocarbons (PAHs) at ambient air in Industrial Complex Area. The samples were collected at 4 sites in Industrial Complex Area and its vicinities. The result indicated that there was the difference of PAHs concentration as followed local characteristics. The level of average concentration of PAHs in the air in Industrial Complex Area was $14.52{\sim}193.48ng/m^3$. The level of average concentration of six materials with possibility of cancer creation was $1.65{\sim}13.44ng/m^3$. The concentrations of PAHs were generally low, but Jechul-dong is considered an area where consistent monitoring of PAHs is required. In addition, benzo(a)pyrene was detected in every atmospheric sample, however the concentration was not high. The level of concentration of benzo(a)pyrene in the air in the Jechul-dong was $2.89ng/m^3$. But, the concentration of the PAHs in Jechul-dong showed that the Benzo(a)pyrene concentration is above $1ng/m^3$ of air quality standard(EU). The results of the concentration level of PAHs in the blood from 240 persons who were exposed directly were surveyed, it was $1.12{\sim}11.45ng/m^3$ for man and $1.20{\sim}26.89ng/m^3$ for woman. It was indicated that the difference between the genders was very little. The accumulation inside human was anticipated as the PAHs concentration in the blood for the aged was very high. Industrial Complex Area and its vicinities are an area which has been greatly influenced by PAHs and environmental contaminants. It is necessary to control the emission sources of PAHs and to construct an observation system at Industrial Complex Area from now on. It is time to reduce the risk factors for health and environmental disease to protect the health of resident in Industrial Complex Area and its vicinities.

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.