• 제목/요약/키워드: Air layer effect

검색결과 452건 처리시간 0.032초

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제45권5호
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC (탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향)

  • Jung, Eunjin;Lee, Yoon Joo;Kim, Younghee;Kwon, Woo Teck;Shin, Dong-Geun;Kim, Soo Ryong
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.247-252
    • /
    • 2015
  • ZSM-5 crystals grew on the surface of ${\alpha}$-SiC and ${\beta}$-SiC particles by hydrothermal synthesis method. SiC particles which were > $50{\mu}m$ of size were used, and oxide layer were developed on the surface of the particles to induce growth of ZSM-5 from the surface. Then, synthesis time and temperature condition were considered growing ZSM-5. In this study, oxide layer was formed on ${\beta}$-SiC at $900^{\circ}C$ in air, and it was controlled to grow ZSM-5 grew from the ${\beta}$-SiC surface with $150^{\circ}C$ synthesis condition. This is due to Si-O-Si or Si-O-Al bond, which is basic framework of ZSM-5 can be easily formed, from the silicon oxide film on the surface of ${\beta}$-SiC. When the synthesis temperature was $200^{\circ}C$, the size of ZSM-5 was increased, and it covered much area of the SiC surface with better crystal shapes with longer synthesis time.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • 제19권4호
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Numerical Simulation of Local Circulation Over the Daechung Lake Area by Using the Mesoscale Model (중규모 수치 모델을 이용한 대청 호수 주변의 국지 순환 모의)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Beom-Keun
    • Journal of the Korean earth science society
    • /
    • 제30권4호
    • /
    • pp.464-477
    • /
    • 2009
  • In this study, we examined the patterns of local circulation over the Daechung lake area through the numerical experiment designed to investigate the impact of lake on the local circulation. The results of numerical experiment showed that the surface temperature predicted by WRF model was lower than the observation, while the wind speed was stronger than the observation. The local circulation over the lake area was characterized by a lake breeze induced by a horizontal thermal contrast between the lake surface and the Surrounding land. At Daecheong Lake, a lake breeze formed at 09 LST and dissipated at 18 LST, with maximum intensity at 15 LST. The vertical extent of the simulated circulation was about 1,200 m. The specific humidity increased as the humid air above the lake moved landward due to the daytime circulation of the lake breeze. The numerical experiments of sensitivity to existence of the lake showed that the simulated surface temperature decreased in the experiment with the lake. Wind speed was more intense around the lake area when the actual land use was substituted by grassland land use. The results of numerical experiments suggest that the lake-induced lake breeze circulation has an effect on the meteorology of planetary boundary layer around the lake.

Manufacture and Characteristics of Concrete Sidewalk Blocks Using Photocatalyst Agent (광촉매제를 사용한 콘크리트 보도블록의 제조 및 특성)

  • Jung, Yong-Wook;Chang, Chun-Ho;Kim, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제7권4호
    • /
    • pp.423-430
    • /
    • 2019
  • In this study, the flexural strength, absorption rate, methylene blue photo catalyst decomposition performance and anti-fouling performance were evaluated according to the photo catalyst mixing rate and block surface wash status by applying photo catalyst to the surface layer of concrete sidewalk block. The results showed that the flexural strength of the block that mixed photo catalyst only in the surface layer of the concrete block was 5.32MPa of the general block (SNW) of 5% photo catalyst, compared to 5.46MPa of the non-mixed concrete block of the reference concrete block. Surface washing block (SW) 5.26MPa, 10% photo catalyst general block (SNW) 5.26MPa, and 5.15MPa surface washing block (SW). It has been shown that the presence of surface washing and the mixing rate of photo catalyst in the concrete block have no effect on the flexural strength. Moreover, the photoreaction performance of concrete sidewalk blocks showed that the methylene blue removal rate of specimens with 5% TiO2 was 34.2%, the methylene blue removal rate of specimens with 10% TiO2 was 37.1%, and the removal rate of the methylene blue of specimens with 5% TiO2 was about 37.9% and 10% mixed specimens with TiO2 was about 37.6%.

Impacts of Local Meteorology caused by Tidal Change in the West Sea on Ozone Distributions in the Seoul Metropolitan Area (서해 조석현상에 따른 국지기상 변화가 수도권 오존농도에 미치는 영향)

  • Kim, Sung Min;Kim, Yoo-Keun;An, Hye Yeon;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • 제28권3호
    • /
    • pp.341-356
    • /
    • 2019
  • In this study, the impacts of local meteorology caused by tidal changes in the West Sea on ozone distributions in the Seoul Metropolitan Area (SMA) were analyzed using a meteorological model (WRF) and an air quality (CMAQ) model. This study was carried out during the day (1200-1800 LST) between August 3 and 9, 2016. The total area of tidal flats along with the tidal changes was calculated to be approximately $912km^2$, based on data provided by the Environmental Geographic Information Service (EGIS) and the Ministry of Oceans and Fisheries (MOF). Modeling was carried out based on three experiments, and the land cover of the tidal flats for each experiment was designed using the coastal wetlands, water bodies (i.e., high tide), and the barren or sparsely vegetated areas (i.e., low tide). The land cover parameters of the coastal wetlands used in this study were improved in the herbaceous wetland of the WRF using updated albedo, roughness length, and soil heat capacity. The results showed that the land cover variation during high tide caused a decrease in temperature (maximum $4.5^{\circ}C$) and planetary boundary layer (PBL) height (maximum 1200 m), and an increase in humidity (maximum 25%) and wind speed (maximum $1.5ms^{-1}$). These meteorological changes increased the ozone concentration (about 5.0 ppb) in the coastal areas including the tidal flats. The increase in the ozone concentration during high tide may be caused by a weak diffusion to the upper layer due to a decrease in the PBL height. The changes in the meteorological variables and ozone concentration during low tide were lesser than those occurring during high tide. This study suggests that the meteorological variations caused by tidal changes have a meaningful effect on the ozone concentration in the SMA.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • 제31권2호
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Study on the Changes of Dentinal Hypersensitivity and Surface Characteristics Following the Various Root Treatment (수종의 치근면 처치 방법에 따른 상아질 지각 과민 변화 및 표면 특성에 관한 연구)

  • Kwon, Soon-Young;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • 제29권1호
    • /
    • pp.51-63
    • /
    • 1999
  • Exposure of the root surface due to gingival recession after periodontal surgery, elicit pain response when exposed to mechanical, heat, chemical or osmotic irritation. Especially patients treated with periodontal surgery, show high frequency. There have been reports that the 1 out of 7 patients complains of dentinal hypersensitivity. There have been many studies on the clinical effects of various materials on the treatment of dentinal hypersensitivity. The purposes of this study were to evaluate the effect of sodium chloride and potassium oxalate and to observe the relationship between the dentinal hypersensitivity and surface characteristics such as dentinal tubule size and number. This study included 20 teeth which were scheduled for extraction and had no pulpal disease. These teeth were divided into Root planing group, EDTA group, NaCl group and Oxalate group. Dentinal hypersensitivity is measured by tactile, pressured air and cold water using NRS (Numerical Rating Scales). Teeth were extracted under local anesthesia and each specimen was sectioned to a size about 3 X 5 mm and was examined under the scanning electron microscope (X2,000) The results were as follows, 1. The EDTA group exhibited significantly increased dentinal hypersensitivity comparing with the other groups. 2. The NaCl and Oxalate groups showed significantly reduced dentinal hypersensitivity comparing with the EDTA group. 3. As a method for dentinal hypersensitivity measurement, it was presumed thet tactile sensitivity test was not sensitive method but air blast test and cold water test were adequate method. 4. In a SEM study, the root planing group exhibited amorphous smear layer and showed no dentinal tubule orifice, but the EDTA group showed the large number of dentinal tubules. On the other hand, the NaCl and Oxalate groups did not show exposed dentinal tubules. The NaCl group showed more rough root surface than the EDTA group, and the Oxalate group showed many participates to be presumed as calcium oxalate particle. As the results from this study, root planing couldn't expose the dentinal tubule and NaCl and potassium oxalate occluded exposed dentinal tubule effectively. Dentinal hypersensitivity has close relationship with the exposure of dentinal tubules, especially with it's size and number.

  • PDF

Preparation of Laver Powder and Its Characteristics (김분말의 제조와 특성)

  • Lee, Hyang-Hee;Lee, Jang-Wook;Rhim, Jong-Whan;Jung, Soon-Teck;Park, Yang-Kyun;Ham, Kyung-Sik;Kim, In-Chul;Kang, Seong-Gook
    • Korean Journal of Food Science and Technology
    • /
    • 제31권5호
    • /
    • pp.1283-1288
    • /
    • 1999
  • Effect of drying methods, such as natural solar drying, hot air drying$(at\;60^{\circ}C\;and\;105^{\circ}C)$, vacuum drying and freeze drying methods, on the quality of laver were investigated to develop optimum processing conditions for preparation of laver powder. Appreciable amount of laver pigments such as chlorophyll, carotenoid and phycobilin were lost during washing and drying process. Their loss was affected significantly by the method of drying. Among the methods tested, high temperature air drying was the worst in retaining laver pigment, while freeze drying was the best. Loss of vitamin C which was in the range of 75-99% was also affected by the method of drying. Isotherms for laver powder shelved sigmoidal shape and monomolecular layer moisture content of both laver powder(Porphyra dentata and Porphyra tenera) determined by the BET equation was 6.30%(dry basis). Laver powders prepared with Porphyra dentata and classified with 50-, 80- and 100- mesh sieves showed monomodal size distribution with the high frequency at 110-120, 100-110 and $80\;{\mu}m$, respectively, which indicated that size or laver powder was homogeneous.

  • PDF

Unsteady 2-D flow field characteristics for perforated plates with a splitter

  • Yaragal, Subhash C.
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.317-332
    • /
    • 2004
  • Wind tunnel experiments were conducted under highly turbulent and disturbed flow conditions over a solid/perforated plate with a long splitter plate in its plane of symmetry. The effect of varied level of perforation of the normal plate on fluctuating velocities and fluctuating pressures measured across and along the separation bubble was studied. The different perforation levels of the normal plate; that is 0%, 10%, 20%, 30%, 40% and 50% are studied. The Reynolds number based on step height was varied from $4{\times}10^3$ to $1.2{\times}10^4$. The shape and size of the bubble vary with different perforation level of the normal plate that is to say the bubble is reduced both in height and length up to 30% perforation level. For higher perforation of the normal plate, bubble is completely swept out. The peak turbulence value occurs around 0.7 to 0.8 times the reattachment length. The turbulence intensity values are highest for the case of solid normal plate (bleed air is absent) and are lowest for the case of 50% perforation of the normal plate (bleed air is maximum in the present study). From the analysis of data it is observed that $\sqrt{\overline{u^{{\prime}2}}}/(\sqrt{\overline{u^{{\prime}2}}})_{max}$, (the ratio of RMS velocity fluctuation to maximum RMS velocity fluctuation), is uniquely related with dimensionless distance y/Y', (the ratio of distance normal to splitter plate to the distance where RMS velocity fluctuation is half its maximum value) for all the perforated normal plates. It is interesting to note that for 50% perforation of the normal plate, the RMS pressure fluctuation in the flow field gets reduced to around 60% as compared to that for solid normal plate. Analysis of the results show that the ratio [$C^{\prime}_p$ max/$-C_{pb}(1-{\eta})$], where $C^{\prime}_p$ max is the maximum coefficient of fluctuating pressure, $C_{pb}$ is the coefficient of base pressure and ${\eta}$ is the perforation level (ratio of open to total area), for surface RMS pressure fluctuation levels seems to be constant and has value of about 0.22. Similar analysis show that the ratio $[C^{\prime}_p$ max/$-C_{pb}(1-{\eta})]$ for flow field RMS pressure fluctuation levels seems to be constant and has a value of about 0.32.