• 제목/요약/키워드: Air jet

검색결과 942건 처리시간 0.02초

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

혼합층의 지연효과를 배제한 비정상 대향류 확산 화염의 소화 (The extinction of unsteady counterflow diffusion flame without the retardation effect of a mixing layer)

  • 이은도;오광철;이기호;이춘범;이의주;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.93-101
    • /
    • 2003
  • The extinction of unsteady diffusion flame was experimentally studied in an opposing jet counterflow burner using diluted methane. The stabilized flame was perturbed by linearly varying velocity change that was generated by pistons installed on both sides of the air and fuel stream. As the results, the extinction of unsteady flame is dependent not only on the history of unsteadiness, but also on the initial condition. We found that there are several unsteady effects on the flame extinction. First, the extinction strain rates of unsteady cases are extended well beyond steady state extinction limits. Second, as the slope of the strain rate change increases, the unsteady extinction strain rate becomes larger. Third, the extension of unsteady extinction strain rate becomes smaller as the initial strain rate increases. We also found that the extension of the extinction limit mainly results from the unsteady response of the reaction zone because there is no retardation effect of a mixing layer for our experimental condition.

  • PDF

O2/H2 화염의 초임계 조건 연소 특성 연구를 위한 모델 연소기 설계 (Design of a Model Combustor for Studying the Combustion Characteristics of O2/H2 Flames at Supercritical Conditions)

  • 안영종;김영후;권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.96-104
    • /
    • 2020
  • A model combustor has been designed and fabricated for studying the combustion characteristics of oxygen (O2)/hydrogen (H2) flames under supercritical conditions. The combustor is designed to allow combustion experiments up to 60 bar, the supercritical pressure condition of O2 and H2. Injectors can be replaced to study various types of flames and the combustion chamber is designed to visualize flames by installing optical windows. Through the preliminary tests, including a high-pressure (up to 60 bar) test using air and combustion tests for coaxial jet flames of liquid oxygen (LO2)/gaseous hydrogen (GH2) at elevated pressure, the reliability of the combustor has been demonstrated.

한반도 및 동아시아 지역에서 조종사 보고 자료로 관측된 항공난류의 통계적 분석 (A Statistical Analysis of Aviation Turbulence Observed in Pilot Report (PIREP) over East Asia Including South Korea)

  • 이단비;전혜영
    • 대기
    • /
    • 제25권1호
    • /
    • pp.129-140
    • /
    • 2015
  • The statistical analysis of aviation turbulence occurred over South Korea and East Asia regions is performed, using pilot reports (PIREPs) during December 2002~November 2012 that were provided by the Korea Aviation Meteorological Agency (KAMA) and the National Center for Atmospheric Research (NCAR). In South Korea, the light (LGT)- and moderate or greater (MOG)-level turbulence events occurred most frequently in spring and winter due to strong vertical wind shear below or above jet stream in these seasons. Spatially, the LGT- and MOG-level events occurred mainly along domestic flight routes. The higher occurrences of the LGT- and MOG-level convectively induced turbulence (CIT) events show in spring and summer when convective systems frequently affect the Korean peninsula. The results are generally similar to a previous study on the aviation turbulence over South Korea during 2003~2008, except that MOG-level CIT events occurred more in February, June, and October. Over East Asia region, the LGT- and MOG-level events appeared mostly in summer and spring, respectively, and the highest occurrence is over the southeast region of Japan and Kamchatka peninsula near Russia.

고온기류중에 재분사된 연소기 후류의 수치해석 (Numerical simulation of combustor afterward sprayed in hot product stream)

  • 김태한;권형정
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.841-848
    • /
    • 1997
  • Combustion of gaseous fuel combustor in a high temperature vitiated air stream was studied with computer simulation. It is for application to afterburner of gas turbine engine which the exact mechanism is not yet clarified. As the jet velocity from fuel nozzle is very high and the geometry of combustor is three dimensional complex structure, many time and money are required to have good results. To consider this demerit, it is simplified to 2-dimensional and modified with the nozzle hole area to same area of annual status. As the thickness of annual is too thin, it is to divide with the many grids for reasonable results. Accordingly, new method which injected fuel mass, momentum and energy are added to source terms of each governing conservation equation as a source terms is introduced like as two phase analysis. Reaction rate is determined by taking into account the Arrhenius reaction based on a single step reaction mechanism. It is focused to temperature and product concentration distribution at each equivalence ratio of inlet hot product.

비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석 (The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF

회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰 (Discussion on the Practical Use of CFD for Grate Type Waste Incinerators)

  • 류창국;최상민
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석 (Numerical study on extinction of premixed flames using local flame properties)

  • 정대헌;정석호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.