• Title/Summary/Keyword: Air heating system

Search Result 1,321, Processing Time 0.025 seconds

An Interdisciplinary Approach for the Solution of Enviromental polution (環境汚染의 解決을 위한 綜合科學的 接近方法 (I))

  • Sin, Hyeon-Deok
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.3
    • /
    • pp.207-216
    • /
    • 1979
  • Environmental pollution or contaminations caused by various kinds of pollutants have become one of most serious problems of our time. Environ mental pollution is the unfavoralble alteration of our surroundings, through direct or indirect effects of changes in energy patterns, rediation levels, chemical and physical constitution and abundances of organisms. These changes may affect humans directly or through their supplies of water and of agicultural and other biological products, their physical objects or possessions, or their opportunities for recreation and appreciation of nature. Pollutants that meet the criteria of this definition of environmental pollution are numerous: gases (such as sulfur dioxide and nitrogen oxides) and paniculate matter (such as smoke particles, lead aerosols, and asbestos) in the atmosphere; pesticides and radioactive isotopes in the atmosphee and in waterways; sewage, organic. chemicals, and phosphates in water; solid wastes on land; excessive heating (thermal pollution) of rivers and lakes; and many others. Some of these pollutants are introduced into the environment naturally, others by human actions, and most in both ways. Our major concer is with environmental pollution resulting wholly or largely as a by-product of human activities, because these can be controlled most readily. Environmental pollution cannot be solved by science and technology alone. It should be handled by an interdisciplinary approach with combined methods of science and technology as wen as social science disciplines for the better solution of this critical problem. In this respect, introducing "Environmental Science," a new scientific approach for the solution of environmental problems, which is now widely accepted by most developed countries of the world will be very helpful for systematization of theoretical basis for a new scientific approach to environmental pollution. Environmental science is "the study of all systems of air, land, water, energy, and life that surround Man. It includes all sciences directed to the system-level of understanding of the environment, drawing especially upon such disciplines as meteorology, geophysics, oceanography, and ecology, and utilizing to the fullest knowledge and techniques developed in such fields as physics, chemistry, biology, mathematics and engineering as well as many social science disciplines, such as economics, such as economics, law, political science and public administration." The components of this discipline are not new, for they are drawn from existing areas of science within biology chemistry, physics, and geoscience. What is really new about environmental science, however, is it siewpoint - its orientation to global problems, its conception of the earth as a set of interlocking, interacting systems, and its interest in Man as a part of these systems.

  • PDF

Computational Analysis on the Noise Characteristics of Ship Large Duct (선박용 대형 덕트의 소음 특성 전산해석 연구)

  • Song, Jee-Hun;Hong, Suk-Yoon;Lee, Yi-Soo;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.751-758
    • /
    • 2015
  • Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994). However, the method is not suitable for large ducts in ships. In this paper, computational analysis methods are used to develop a noise prediction method for the large ducts in ships. To develop regression formula of attenuation of sound pressure level in large ducts, Boundary Element Method(BEM) is used. BEM and Computational Fluid Dynamics(CFD) are applied to the analysis of flow-induced noise in ducts with stiffeners inside. Loud noise above 100 dB can be generated in some cases. Breakout noises of large ducts are also analyzed by using BEM and Finite Element Method(FEM). The acoustic pressure level shows about 10-15dB difference between inside and outside of the duct. Utilizing the results of this study, it is expected that shipyard planners can predict noise of the HVAC system for ships.

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.

The Impact of Population Aging on Energy Use and Carbon Emissions in Korea (인구 고령화가 에너지 사용과 탄소 배출에 미치는 영향)

  • Kim, Dong Koo;Park, Sunyoung
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.99-129
    • /
    • 2014
  • This research estimates the impact of population aging on energy use and carbon emissions by energy sources and by industrial sectors in Korea until 2035. For the estimation, the structural change in household consumption expenditure identified by the age-specific consumption pattern was analyzed in conjunction with energy and environment input-output tables. The estimation result presents that, despite the population aging, energy use and carbon emissions induced by household consumption continue to increase until 2026, and then that elevated levels of energy use and carbon emissions will be maintained for a considerable period of time. According to the estimation by energy sources, the use of natural gas will show substantial increase while the use of crude oil will switch to a downturn at a relatively early period. According to the estimation by industrial sectors, carbon emissions in the sectors with relatively high consumption share of old households such as medical health, dwelling, lighting, heating, air-conditioning, and food will have substantial increase, whereas those in the sectors associated with education, transport, catering, and accommodation services will turn downward relatively early. In addition, the study analyzes through policy simulation the impact of aging-related policy similar to the basic pension system, which is recently being discussed for legislation, on energy use and carbon emissions.

  • PDF

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

A Study on the Management Improvement of an Academic Library Using Customer Relationship Management (CRM 기법을 이용한 대학도서관 경영개선에 관한 연구)

  • Park, Il-Jong;Yoo, Kyeong-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.2
    • /
    • pp.31-56
    • /
    • 2019
  • The user satisfaction and needs of an academic library were caught through a questionnaire survey in this study. The aim of this study is to draw up the CRM based plan for meeting user needs on the study. The users' demographic information, library resources & their use, homepage, services, and facilities/environment of the library were categorized in the questionnaire and analyzed for this study. The major conclusions of this study are: (1) The library resources use was the highest, and its facilities/environment was the lowest in the user satisfaction study. It also revealed that there are much necessities for the quick acquisition and dissemination of the requested material to the library users, and for the inter-library loan (ILL) services among campuses for the subscription books in the library resources use study, too; (2) There are a lot of necessities for the improvement of OPAC retrieval and the subscription books system, and menu rearrangement in the library homepage; (3) There are a lot of necessities for the plans of more frequent library event, more detailed event guidance, and more reinforcement of public relations such as SMS, push services of SDI etc. in the library user services; and (4) There are a lot of necessities for the improved policies to the complaints of library users such as the lack of common study place and lockers, air conditioning and heating problem, complaints about facilities management of restroom (lack of toilet paper), library accessibility on campus, unauthorized user management etc. in the facilities/environment of the library.

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.