• Title/Summary/Keyword: Air heating

Search Result 2,333, Processing Time 0.028 seconds

Study on Analysis of Buoyancy Effect in Air-heating Collector using Solar Heat (태양열을 이용한 공기가열 집열기의 부력효과 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.467-474
    • /
    • 2021
  • The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.

Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat (태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

Energy Saving Effects of Carbon Nano Heating Pipe for Heating of Greenhouse (탄소나노히팅파이프를 이용한 온실 난방에너지 절감효과)

  • Paek, Y.;Jeon, J.G.;Yun, N.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2011
  • This carbon nano heating system was consisted of power supply equipment, a carbon fiber and a stainless flexible hose. carbon nano heating system was manufactured by carbon fiber of a power capacity 30kw/h and light-oil hot air heater in control plot was the heating capacity 30,000kcal/h, As the result, Temperature difference due to carbon nano heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, comparison greenhouse were $14.8^{\circ}C$, $13.4^{\circ}C$ respectively. It was found that carbon nano heating system and light-oil hot air heater heating cost were 1,095,740won, 2,683,628won. therefore as heating cost saving 60%. Yield of tomatoes cultured in greenhouse using carbon nano heating pipe was 4% inclease. Economic analysis comparison between the carbon nano heating pipe and the hot air heater in greenhouse were 41% respectively.

Research on the Thermal Comfort Heating Mode Considering Psychological and Physiological Response of Automobile Drivers (운전자의 심리·생리 반응을 고려한 승용차 쾌적 난방 모드에 관한 연구)

  • Kim, Min Soo;Kum, Jong Soo;Park, Jong Il;Kim, Dong Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • In this research, the psychological and physiological reactions of the driver were measured during winter to evaluate thermal comfort. The experiment was conducted using 3 different cases which are hot air heating, warm-wire seat heating and hot air & warm-wire seat heater operating simultaneously. With regard to psychological reaction, the warm-wire heating mode was the most preferred. The reason is that it is dry in other cases. With regard to EEG response, thermal comfort increased by 37% in warm air mode heating. In addition, when the warm-wire heating mode and the hot air & warm-wire heating mode were simultaneously operated, the thermal comfort continuously increased by between 17% and 20% for 20 minutes after boarding. Under the change of the autonomic nervous system, the thermal stress level increased by 23% after 15 minutes on board in the hot air heating mode and decreased continuously by 13% during the warm-wire seat heating mode. We recommended the hot air heating mode is only used for a short time to raise the inside temperature during the early boarding period and that warm-wire seat heating mode be actively utilized.

Thermal Energy Characteristics for Greenhouse Heating System with Far-Infrared Heater (원적외선 면상발열체에 의한 온실 난방시스템의 열특성 분석)

  • Ro, J.G.;Kim, H.J.;Li, H.;Han, C.S.;Cho, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.529-534
    • /
    • 2006
  • The greenhouse heating system with far-infrared heater was built to analyze various thermal characteristics, such as greenhouse air temperature, soil temperature, energy flow, energy consumption in far-infrared heater, and other factors, which could be used in comparison with other greenhouse heating system in this study. The results showed that the inside air temperature of the far-infrared greenhouse heating system was $5^{\circ}C$ higher than that of hot air heating system. Heat loss of daytime was found to be larger than that of night time as much as 44.8% for the heating system with far-infrared heater. In the heating system with far-Infrared heater, when the lowest ambient temperature was -8 $\sim$ -7$^{\circ}C$, the air temperature of greenhouse was 12 $\sim$ 15$^{\circ}C$, thus the far-infrared heating system was shown to be feasible for heating system. Energy consumption of far-infrared heating system was shown to be less than that of hot air heating system.

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type (공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구)

  • Lee, Kwon-Jae;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Kwon, Jeong-Tae;Huh, Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

The Ivestigation and Estimate of Influence on Air Quality by the Exhaust of Air Pollutant from Facility of the District Heating Located in Small City (중소도시에 위치한 집단 열 공급시설에서 배출되는 대기오염물에 의한 주변 대기질의 영향 조사 및 예측)

  • Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.1-10
    • /
    • 2003
  • This study was aimed to investigate the influence on the vicinity by air pollutant generated from facility of the district heating located in local small town. We selected the seven areas arround the surroundings of facility of the district heating, compared the air quality evaluated before and after operations of the facility, and estimated the diffusion of air pollutant exhausted from the facility using a ISC model. The result was that the concentration of TSP before and after operations of the facility was 89${\sim}$94${\mu}$g/m$^3$,and 72${\sim}$81${\mu}$g/m$^3$, respectively and the latter showed a decline in concentration. Also, there was no relationship between straight distance from the facility of the district heating and the concentration of TSP. This result was applicable to cases of PM-10 and SO$_2$. We also investigated the influence on the air around the neighbored area by air pollutant produced from facility of the district heating using ISCLT3 model. The adding-concentrations of TSP, SO$_2$,NO$_2$, and CO were 0.0019${\sim}$0.00183${\mu}$g/m$^3$, 0.0029${\sim}$0.5648ppb, 0.2924${\sim}$l.9837ppb,and 0.0087${\sim}$0.0590ppb, respectively. It is predicted that each concentration is added to pollutant exhausted from facility of the district heating and is about 1/100${\sim}$1/180,000 of present air quality. This has a tiny influence on general air quality. According to this analysis, the concentration of air pollutant is less effected to pollutants expected by the facility of the district heating than other pollutants emitted from mobil source or industrial complex, and etc.

Simultaneous Heating and Cooling Multi-Air Conditioning System for Agricultural Products Management (농수산물 관리를 위한 냉난방 동시형 멀티 에어컨 시스템)

  • Shin, Jin-Seob;Hong, Ji-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.65-70
    • /
    • 2020
  • In this paper, to establish a high-efficiency air-conditioning and heating system, we developed a simultaneous air-conditioning and heating system that can do both air-conditioning and heating at the same time. It was applied to hybrid plant plants to enable automation of complex farms. For this purpose, the heat exchanger, which functions as a condenser during heating, was required to function as an evaporator during cooling so that air conditioning and heating could be implemented simultaneously. For experiments, the simultaneous air conditioning system for heating and cooling was produced and applied to the plant factories in the farms so that plants could be grown, stored, and dried. As a result, a single system was able to control the temperature environment of agricultural products with an energy-saving system that simultaneously resolves heating and cooling. Therefore, efficient crop management was possible by implementing an air conditioning system that did not require installing air conditioners and boilers at the same time.