• 제목/요약/키워드: Air handling system

검색결과 159건 처리시간 0.024초

자동차용 공기분배장치의 성능개선에 관한 실험적 연구 (An Experimental Study on Performance Improvement of Automotive Air Handling System)

  • 유성연;이대웅;김진혁
    • 설비공학논문집
    • /
    • 제19권9호
    • /
    • pp.622-629
    • /
    • 2007
  • Compact semi-center type automotive air handling system(AHS) is developed in this study and it's performance is compared with the conventional 3-pieces type air hand-ling system. The pressure drop is measured at component level and system level, and air flow rate and air distribution of discharge air through each ducts from air handling system are measured. System level characteristics of pressure drop at face and windshield discharge mode and air flow rate are investigated, and also temperature control linearities are tested. The volume of the air handling system package is reduced about 20%. And air flow rate increase about 5 to 20% compared to the conventional 3-pieces type air handling system at each discharge mode with significantly improved air pressure drop both component and system level. Also, air distribution and temperature controllability meet to evaluation criteria.

압축공기를 이용한 에어호이스트의 무중력화 제어 (Weightless Control of Air Hoist using Compressed Air)

  • 이강호;배상일;홍대선;정원지
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.144-144
    • /
    • 2000
  • Air balance hoists are widely used in handling of heavy materials in industry. Currently used air balance hoists adopt manual switches for vertical motion, thus the operator has a difficulty in operating of the switches and handling of material simultaneously. To overcome this difficulty, this study develops a weightless air-balance-hoist system using compressed air. This system memorizes the weight of material in terms of pneumatic pressure with a pneumatic circuit. Such memory of the material weight is used for achieving weightless handling of materials. Through a series of experiments, handling forces and the response of the system for various material weights are analyzed. The results show that the developed system can be used for weightless handling o( heavy materials.

  • PDF

룰 베이스를 이용한 정풍량 공조기 고장 검출 및 진단 시스템의 실험적 연구 (An Experimental Study on the Rule Based Fault Detection and Diagnosis System for a Constant Air Volume Air Handling Unit)

  • 한도영;김진
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.872-880
    • /
    • 2004
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.

WORK BARGE 선의 냉동.공조 SYSTEM (HVAC & Refrigeration System for Work Barge Vessel)

  • 남임우;정재천;김봉제
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.583-590
    • /
    • 2008
  • 최근 작업자 숙소 및 이송용 외에 작업용으로 사용 가능한 Barge선의 일종인 Accommodation Work Barge 선의 건조량이 증가 추세인 바 현재 중국에서 건조 중인 해당 선박의 HVAC & Refrigeration system에 대하여 정리하였다. 본 시스템은 R404A Direct expansion 냉각방식 (직접팽창방식)이 적용되었으며 HVAC system 중 Air conditioning 부분에 대해서는 선박의 각 Deck 기준으로 Zoning 하여 개별적인 Air handling unit와 Condensing unit를 구성하였으며 (각 unit의 용량은 필요용량의 100%), 냉동 창고의 Refrigeration system은 해당 격실 (육고, 어고, 야채고)에 각각 Unit cooler를 설치하고, Condensing unit를 기계실에 설치하였다. 장비는 전체 용량 100%에 대하여 항시 운전하는 100% 용량의 장비와 비상시에 운전하는 100% 용량의 예비 장비로 구성된다. 냉동 창고에 인접한 Dry provision store는 냉동 창고와는 별개로 중앙 공조기로부터의 냉각 공기를 이용하여 Spot cooling하였다. 본 System의 구성에 대한 장점 및 단점은 아래와 같다. 1. Air conditioning system이 각 Zone에 대하여 구성되므로 각 Zone에 대하여 제어가 가능하다. 2. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 냉매 배관의 길이가 짧다. 3. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 실내의 Maintenance space 상에 여유가 없다.

  • PDF

체계중심병원설계를 위한 공조조닝 설정의 건축 계획에 관한 연구 (A Study on Architectural Planning of Establishing Air-Conditioning Zoning for Hospital Design Focused on System)

  • 김은석;양내원
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제24권3호
    • /
    • pp.29-38
    • /
    • 2018
  • Purpose: Space planning to cope with the changing function of the hospital is essential in hospital architecture. In order to do so, it is vital that the paradigm shifts from hospital design focused on purpose toward hospital design focused on system. Not only space planning but also air-conditioning plan, which is most closely related to the operation and maintenance of hospital facilities; and the environment of hospital users, should be able to respond to changes with ease. Thus this study is to provide fundamental data of the air-conditioning plan for the hospital design focused on system by analyzing the concept and characteristics of the air-conditioning plan in the recent hospital architecture planning. Results: As a result of this study, in the air conditioning plan for the hospital architecture planning, the most important are the location relation among the departments the air handling unit room and the air handling unit manage and the air conditioning zoning setting according to the air conditioning system. Therefore, for the hospital architecture planning focused on system, it is necessary to establish the air conditioning setting that can accommodate changeable environment of departments and accordingly the appropriate area range of the air conditioning zoning and the plan for the location of the air handling unit should be considered. Implications: Thereby aims to provide fundamental data on air handling unit zoning planning in the hospital architecture planning.

사계절 외기 전용 공조기에 대한 실험적 연구 (An Experimental Study on Four-season Dedicated Outdoor Air Handling Unit)

  • 박승태;김종천;홍영주;김영일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.577-582
    • /
    • 2008
  • The present study has been conducted to study the performance of Dedicated outdoor air handling unit. Dedicated outdoor air handling unit consists of pre-cooler, dehumidification and after cooler. By combining dedicated outdoor air-conditioning and heat pump, a new four-season dedicated outdoor air handling unit has been developed. Amount of energy saved and condition when this new system is superior to conventional vapor-compression cooling system has been presented.

  • PDF

중앙공조 및 개별공조에서의 외조기 적용 (Application of Four-season Dedicated Outdoor Air Handling Unit in Central and Personal Air-conditioning)

  • 박승태;김영일;이태호;최세영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.591-596
    • /
    • 2008
  • The present study has been conducted to study the performance of dedicated outdoor air handling unit in central and personal air-conditioning. With conventional central and personal air-conditioning systems which are designed according to the maximum load, humidity increase above comfort level can not be avoided as the cooling load decreases. The adoption of dedicated outdoor air handling unit, however, can solve this problem. Moreover, the dedicated outdoor air handling unit has the characteristics of anti-bacteria due to dry coil, energy saving and good indoor air quality. During cooling seasons, dedicated outdoor air handling unit can save energy up to 30% than the conventional cooling+reheating system for controlling both temperature and humidity.

  • PDF

룰 베이스를 이용한 공조기의 고장검출 및 진단 (Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases)

  • 한도영;주명재
    • 설비공학논문집
    • /
    • 제14권7호
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

레벨링밸브를 가진 공기스프링 현가장치의 승차감 및 조종안정성 해석 (Ride and Handling Analysis of An Air Spring Suspension with Leveling Valve)

  • 탁태오;박종훈
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.105-113
    • /
    • 2000
  • Air springs are now widely used in bus or truck suspensions due to their advantages over conventional metal spring as coil or leaf springs. Air springs have soft spring rates, which give better ride quality, and additional leveling system provides constant ride height and maintains almost same vertical natural frequencies. A mathematical model of an air spring suspension system with height control system is constructed and dynamic responses of the suspension system are investigated in the light of leveling valve motion characteristic, vertical motion natural frequency. Also, using a full vehicle model, handling characteristics of an air spring suspension is studied and the results are compared with real test results, which shows good agreements.

  • PDF

자동 공조설비의 고장 검출 기술 (Fault Detection in an Automatic Central Air-Handling Unit)

  • 이원용;신동열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF