• Title/Summary/Keyword: Air gap flux densities

Search Result 8, Processing Time 0.025 seconds

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator (영구자석 바이어스 자기부상 구동기 설계 및 해석)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

A Fast Analytic Model of Axial Flux Permanent Magnet Machines with Static/Dynamic Axis Eccentricity

  • Guo, Baocheng;Huang, Yunkai
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.554-560
    • /
    • 2016
  • This paper presents a general analytical model to calculate the characteristics of axial-flux permanent-magnet machines with axis eccentricities. The radial and tangential magnetic flux densities in the air gap under normal conditions were first obtained using a combination of Maxwell's equations and Schwarz-Christoffel (SC) transformation. Next, equations for the radii were deduced to investigate the static/dynamic eccentricities. The back electromotive forces (EMFs) were calculated and compared with those obtained from finite element (FE) analysis. The analytical predictions show good agreement with the FE results. Detection approaches were obtained by comparing with normal conditions, and the analytical model was verified experimentally.

Design of a Magnet Assembly for an NMR Based Sensor Using Finite Element Analysis

  • Cho, S.I.;Chung, C.H.;Kim, S.C.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • A magnet assembly is a critical element of a nuclear magnetic resonance(NMR) based sensor. Magnetic flux density and homogeneity are essential to its optimum performance. Geometry and magnet material properties determine the magnetic flux density and homogeneity of the assembly. This study was carried out to develop the design for a magnet assembly. A 2-D finite element model for the magnetic assembly was developed using ANSYS and evaluated the effects of adding shimming frames and steel bars in the corners of the rectangular steel cover which surrounded the magnet. The assembly was manufactured and evaluated. According to the ANSYS model, modified pole frames increased magnetic flux density by 8.3% and increased homogeneity by 83%. Addition of steel bars in the corners increased the magnetic flux density by 1%, and improved homogeneity up to three times. The difference between simulated and measured magnetic flux densities at the center point of the air gap was within 2.4%.

  • PDF

A study on Heat Flux of Induction Heating of steel plate using the Taguchi Method (다구찌법을 이용한 유도가열 강판의 입열량에 관한 연구)

  • 이윤창;장상균;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.671-674
    • /
    • 2002
  • Induction heating is a process with magnetic and thermal situation. Induction heating of flat metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. When the high frequency electric current flows in a coil, the process parameters which are air gap, power density, and heating time have a important roles on induction heating of steel plate. This study investigates an influence of the process parameters by means of experiments using Taguchi method.

  • PDF

A study on Optimization of the Design Variables of Linear Motor Using Genetic Algorithm (유전알고리즘을 이용한 리니어모터의 설계변수 최적화에 관한 연구)

  • Joo, Sang-Hyun;Jung, Jae-Han;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.110-117
    • /
    • 2002
  • This paper proposes a optimization of the design variables of linear motor for the improvement of thrust. Especially, this paper treats the shoe, which can be good to flow of a magnetic flux in linear motor. Firstly, this paper uses a space harmonic analysis method(SHAM) based on Fourier series, for analyzing the characteristics of core type linear motor, including slot structure and shoe. And compare the magnetic flux densities of linear motor at air gap with the results of the SHAM and the Finite Element Method(FEM). Secondly, this paper uses a genetic algorithm, which is good to find the global solutions. The design variables are the pole pitch of magnet, the pitch of slot, the height of slot, the width of shoe and the width of magnet. The maximum thrust with optimum design variables is about 247 N which is improved about 16%.

Analysis of Multiple Factor of the Eddy Current Brake for Railway Application (철도차량용 와전류 브레이크의 다중 인자 분석)

  • Lee, Chang-Mu;Park, Hyun-Jun;Cho, Sooyoung;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1385-1390
    • /
    • 2015
  • This paper is analysis of multiple factor that should be considered in the design of an eddy current brake used as auxiliary brake system. The eddy current brake is a brake that generates a braking torque in a rotational direction opposite to the direction of the rotor by using a time-varying magnetic flux. The eddy current brake has the advantage of being able to take high current densities because this is used for a short period of time. Also, the eddy current brake is influenced by multiple factor such as number of slots, teeth width, coating thickness, air-gap length and so on. Therefore the eddy current brake was designed for use in railway application in consideration of the operation region and critical parameters.