• Title/Summary/Keyword: Air flow simulation

Search Result 1,011, Processing Time 0.024 seconds

Numerical Simulation of Plate Finned-Tubes Condenser (평판휜-관 응축기의 수치 시뮬레이션)

  • Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-205
    • /
    • 1994
  • A simulation program of the plate finned-tubes condenser widely used in the air conditioning system was developed. The program took into account the variations of the flow properties and fluid friction factor of refrigerant, and the heat transfer coefficients of refrigerant and air sides. The program was applied to a copper tube condenser which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.20m and three rows arraied staggered. Simulation results were such that refrigerant was super-heated state from the entrance to the 0.14m point, two-phase flow from the 0.14m point to the 4.10m point, sub-cooled state from the 4.10m point to the outlet. The degree of sub-cooled was $6.1^{\circ}C$. The variations of refrigerant quality, temperature, pressure, velocity, specific enthalpy, specific volume and air temperature, tube temperature were showed.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler According to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.85-92
    • /
    • 2005
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels (복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석)

  • Hong, Seong-Ho;Shin, Jong-Keun;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

Performance analysis of oil free air compressor for automotive electronic air suspension system (차량용 공기현가장치의 무급유 공기압축기 성능해석)

  • Shim, Jae-Hwi;Kim, Ho-Young;Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.572-577
    • /
    • 2006
  • Numerical simulation has been made on the performance of an oil free air compressor for automotive electronic air suspension system. Calculation results on the flow rate at various air supply pressures were reasonably well compared to the experimental data. With the aid of the computer simulation program, parametric study on the compressor design parameters has also been carried out for the compressor performance improvement: Increase in the discharge port diameter or discharge valve stiffness was found to be effective to increase the flow rate per unit compressor input for the present compressor model.

  • PDF

A Numerical Analysis on the Optimum Design of a Duct with Multiple Outlets in a Medium Bus (중형버스 다출구 덕트의 최적설계에 관한 해석적 고찰)

  • 김민호;천인범;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.223-233
    • /
    • 2002
  • The air distribution duct with multiple outlets is an essential part of automotive air-conditioning system In a bus. The estimation of airflow rate in an automotive air-conditioning duct is typically very complicate due to large variations in cross-sectional area and abrupt changes in flow direction, as well as unbalanced distribution of the flow. In this paper, the flow characteristic in a duct with multiple outlets is investigated through experiment, CFD simulation and a one-dimensional simulation. Numerical simulations have been performed for two simplified air conditioning ducts with multiple outlets used in a medium bus. The three dimensional Navier-Stokes code was used to evaluate the overall pressure, velocity Held, and distribution rate at each diffuser according to the change of various design parameters such as ratio of cross-sectional area and radius of bifurcated region. In addition, a one-dimensional program based on Bernoulli equation was developed to obtain optimized diffuser area required to equalize discharge flow rate at each outlet. As a result of this study, optimized diffuser area of design variable by one-dimensional program was very reasonable as compared to the trend deduced from CFD Simulation. Therefore, the simple and convenient one-dimensional analysis developed in this study can be applied in practical design procedure for air-conditioning duct.

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

A Study on Numerical Analysis and Performance Improvement of Ventilation Systems in Coating Room (코팅 룸 배기시스템 수치해석 및 성능개선에 대한 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2086-2091
    • /
    • 2013
  • One of the most important objects for the industrial ventilation is to protect worker's health from the harmful substances. Mainly in industrial ventilation, the harmful substances broken out through manufacturing process are to be quickly emitted outside. Recently the importance of the industrial ventilation increases with the recognition change of industrial ventilation from manufacturing focusing to human focusing. In this paper, the air flow simulation inside the coating room is performed. All the coating room and the ventilation system are modeled by SolidWorks program and air flow distribution and ventilation performance are analyzed by Flow simulation program. And the air flow directions and the air flow velocities inside the coating room are enhanced with the use of local ventilation.

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.