• 제목/요약/키워드: Air distribution

검색결과 3,519건 처리시간 0.025초

보일러 Windbox내 공기공급 계통의 유량분포 해석 (Analysis of Air Distribution in the Windbox System of the Utility Boiler)

  • 박호영;김성철
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.581-589
    • /
    • 2008
  • The pulverized coal combustion behavior in the utility boiler is very complex since so many physical and chemical processes happen in it, simultaneously. The mixing of pulverized coal with combustion air plays an important role in achieving the efficient combustion and stable boiler operation. The distribution of combustion air supplied to the furnace through the windbox damper system has not been clearly known since the individual measurements of air flow for each air nozzle were not possible, yet. The present study describes the CFD modelling of windbox damper system and aims to obtain the air flow rates and pressure loss coefficients across the present five damper systems, respectively. The one dimensional flow network model has been also established to get air flow distributions across the windbox damper, and applied to the actual plant operation condition. Compared with the designed air flow distribution, the modelled one gives a reasonable agreement. For the actual plant operation, the predicted air flow distribution at each air nozzle is differed with the designed data and strongly affected by the individual opening angle.

우리나라 연안의 기온과 수온 분포함수 추정 및 비교평가 (Estimation and Comparative Analysis on the Distribution Functions of Air and Water Temperatures in Korean Coastal Seas)

  • 조홍연;정신택
    • 한국해안·해양공학회논문집
    • /
    • 제28권3호
    • /
    • pp.171-176
    • /
    • 2016
  • 기온과 수온의 분포형태는 발생빈도의 양상을 결정하는 기본적이고 필수적인 정보이다. 또한 기후변화에 의한 기온과 수온의 장기변화 양상 파악에 유용하다. 기온과 수온의 전형적인 분포형태는 다수의 첨두(mode)를 가지는 형태로 일반적으로 널리 사용되는 정규분포로 표현하기에는 한계가 있다. 본 연구에서는 Gaussian 혼합함수와 Kernel 분포함수를 보다 기온과 수온의 보다 적합한 분포함수 형태로 제안한다. 제안된 분포함수를 우리나라 연안 기온과 수온자료를 이용하여 추정-평가한 결과, 관측 자료의 분포는 꼬리 영역에서 크게 차이를 보이고 있는 것으로 파악되었다. 높은 수온영역과 낮은 기온 영역에서 꼬리 영역이 길게 나타나고 있다. 또한 본 연구에서 제안한 분포함수 추정 및 비교는 기온과 수온의 상호 변동관계 및 장기적인 변동양상을 파악할 수 있다. 그러나 평균 기온 및 수온 그리고 정규분포 함수 형태로는 이러한 변화 양상의 파악은 크게 제한되고 있다.

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

수치해석을 이용한 바닥공조 시스템의 공기환경 평가 (Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System)

  • 방승기;안혜린;이원근;문기선;김종률;이광호
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

냉방시스템 보급 활성화를 위한 방안 연구 (Study on the Reasonable Use and Effective Distribution of Diverse Air Conditioning Systems)

  • 김민수;김용찬;정시영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.208-213
    • /
    • 2008
  • In this study, the policies to support reasonable use and effective distribution of air conditioning systems of ice storage type and natural gas type have been investigated. First, this study focused the current policy to stimulate the distribution of these air conditioning systems. Second, the advantage and disadvantage for the air conditioning systems of each type were evaluated. Finally, several policies are proposed for nationwide rational use of energy resources.

  • PDF

2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석 (CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.

R410A 냉방시스템의 마이크로채널 응축기에 관한 연구 (A Study on a Microchannel Condenser in a R410A A/C System)

  • 박창용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.221-226
    • /
    • 2008
  • A microchannel condenser as a part of a R410A residential air-conditioning system was examined experimentally and numerically in this study. The system was operated in separate environmental chambers and its performance was measured in ARI A, B, and C conditions. A numerical model for the microchannel condenser was developed and its results were compared with the experimental results. The model simulated the condenser with the assumption of the uniform air and refrigerant distribution, and with the consideration of the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. In order to consider the non-uniform air distribution, air velocity contours were generated from the measured local air velocities at the face of the condenser. The simulation results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser which was experimentally examined in this study. The comparison of the calculated and experimental results showed that the condenser capacity could be predicted well for every test condition. However, the prediction of refrigerant pressure drop deviated significantly from the measured values.

  • PDF

냉매분배기 분배성능에 미치는 내부 형상인자의 영향 (Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor)

  • 김동휘;사용철;정백영;박병덕
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.

엘리베이터 카 내부 기류분포에 관한 열 유동해석 (Thermal and Fluid Analysis on Air Distribution in a Elevator Car)

  • 정경택;이중섭
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

GIS를 이용한 대기오염 배출량 분포도의 정확도 향상에 관한 연구 (A Study on the Improvement of Accuracy in Mapping the Distribution of the Emission Volume of Air Pollution Using GIS)

  • 최진무
    • Spatial Information Research
    • /
    • 제6권1호
    • /
    • pp.65-76
    • /
    • 1998
  • 대기오염을 관리하기 위해서는 대기오염 농도와 함께 대기오염 배출량의 공간분포가 정확히 산정되어야 한다. 기존의 대기오염 분포도에서는 토지이용 분류도의 해상도(rdsolution)가 낮아 같은 위치에서 오염원별 토지이용이 중복되었기 때문에 배출량의 정확한 공간분포를 산정할 수 없었다. 본 연구에서는 토지이용분류도를 고해상도(28.5m x 28.5m)로 작성하므로써 이것이 배출량의 공간분포 산정과 대기오염농도의 추정에 미치는 영향을 파악하였는데, 결과를 요약하면 다음과 같다. GIS를 이용하여 비교적 고해상도(28.5m x 28.5m)의 토지이용 분류도를 작성하므로써 점 및 선 오염원이 면 오염원과 동일한 지점에서 중보되지 않도록 토지이용을 효율적으로 반영할 수 있었다. 서울지역에 대해 기존으 방법으로 작성된 배출량 분포도와 본 연구에서 작성된 배출량 분포도를 이용하여 대기오염 농도를 추정(TCM-2모형을 이용)한 결과 본 연구에서 작성한 배출량 분포도에 의한 대기오염 농도의 추정지가 자동측정망의 실측치에 근접함을 알 수 있었다.

  • PDF