• 제목/요약/키워드: Air chamber

검색결과 1,334건 처리시간 0.031초

해수교환을 고려한 진동수주형 파력발전구조물에서 불규칙공기흐름에 관한 수치해석 (Numerical Simulation of Irregular Airflow in OWC Wave Generation System Considering Sea Water Exchange)

  • 이광호;박정현;조성;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제25권3호
    • /
    • pp.128-137
    • /
    • 2013
  • 최근, 지구온난화와 대기오염 등에 의해 신재생에너지에 관한 관심이 증가해 왔다. 특히, 가까운 미래에 직면하게 될 화석에너지자원의 고갈문제는 이와 같은 신재생에너지 기술을 가속화 시키고 있다. 다양한 재생가능 에너지자원 중에서 지구의 3/4을 점유하고 있는 해양은 막대한 에너지를 보유하고 있다. 본 연구에서는 항내 수질개선과 파랑에너지의 이용이라는 두 목적을 달성하기 위하여 공기실 내에서 해수면의 상하운동을 공기흐름으로 변환하고, 이를 터빈의 구동력으로 이용하는 파력발전장치인 진동수주형(OWC, Oscillating Water Column) 파력발전시스템을 적용한 해수교환구조물을 제시한다. 또한, 3차원불규칙파수치파동수로에 기초한 3D-NIT(3-Dimensional Numerical Irregular wave Tank)모델을 불규칙파동장에 적용하여 산정된 공기실 내 수위변동의 시간변화로부터 공기흐름속도를 추정하고, 입사주파수스펙트럼의 변화에 따른 공기흐름 주파수스펙트럼의 변화특성, 구조물의 존재여부에 따른 공기실 위치에서 주파수스펙트럼의 변화특성, 구조물에 의한 파랑변형율의 변화특성 및 공기흐름과 유체흐름에 의한 동력 등을 검토한다. 이로부터 공기실 내에서 수위변동 및 공기흐름의 시계열 자료에서 위상차가 존재하며, 유체흐름에 의한 동력이 공기흐름에 의한 동력에 비해 미흡하다는 것을 알 수 있었다.

분무충돌을 이용하는 디젤연소실 설계를 위한 충돌면 분석 (Analysis of Impingement Lands to Help Diesel Combustion Chamber Using Spray Impaction)

  • 박권하
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.24-32
    • /
    • 1996
  • Most of the research of small engines to date focused on developing spark ignition engines occupied much parts. Recently the number of a small direct injection diesel engine applied in small cars has been increased and considered as a next generation power source for passenger cars because of its high efficiency. Therefore the combustion chamber becomes smaller and the fuel injection pressure goes higher, which makes fuel sprays impinged easily on the combustion chamber walls. When strong swirls are not induced, the fuel may not mix with air because of fuel deposition on the wall. As a positive way, the combustion chamber systems which is using spray wall impaction has been introduced and assessed by an experimental or a simulate manner. In these systems the raised lands are positioned in tile chamber for spray impaction in order to break up the fuel drops into much smaller and direct them into desirable direction. This study addresses to the effects of rho position and size of the raised land or glow plug to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then the chamber shapes are discussed with the characteristics and their proper position and size is proposed in any chamber volume.

  • PDF

Dry Air 중의 준평등전계에서 노점과 고체절연물 재질에 따른 수평연면방전 특성 연구 (A Study of Horizontal Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials of Solid Insulator in Quasi-Uniform Field)

  • 강병칠;석정후;민경준;배성우;이광식;박원주
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.64-69
    • /
    • 2015
  • This study investigates the Horizontal surface discharge characteristics of solid insulators by varying their materials, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polyethlene and polyurethane. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polyethlene is higher than that of polyurethane. Moreover, it is observed that the flashover voltage increases as the horizontal distance between the electrodes of each solid insulator become larger, respectively. However, as the pressure is increased, flashover voltage of the solid insulators is saturated. Therefore, selection of cost-effective insulation is needed in order to appropriate pressure.

와류 현상을 이용하는 호흡기류센서 (Respiratory air Flow Transducer Based on air Turbulence)

  • 김경아;이인광;박준오;이수옥;신은영;김윤기;김경천;차은종
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.393-400
    • /
    • 2009
  • The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the devices for cardiopulmonary resuscitation(CPR) procedure. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object existed on the flow stream, but still the flow rate could be evaluated. Computer simulation demonstrated stable turbulence formation big enough to measure. Experiment was followed on the proto-type transducer, the results of which were within ${\pm}5%$ error compared to the simulation data. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999(P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

준평등전계에서의 Dry-Air 노점과 고체절연물 재질 및 형상에 따른 연면방전 특성 연구 (A Study of Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials or Shapes of Solid Insulator in Quasi-Uniform Field)

  • 민경준;강병칠;임동영;이광식;박원주
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.44-49
    • /
    • 2013
  • This study investigates the surface discharge characteristics of solid insulators by varying their materials, their shapes, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polycarbonate, and bakelite. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polycarbonate is higher than that of bakelite. Moreover, it is observed that the flashover voltage increases as the diameter and the thickness of each solid insulator become larger and thicker, respectively. However, the thickness of the solid insulators is more critical for increasing the flashover voltage than their diameter.

호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술 (Respiratory air flow measuring technique without sensing element on the flow stream)

  • 이인광;박준오;이수옥;신은영;김경천;김경아;차은종
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향 (Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul)

  • 배귀남;박주연;김민철;이승복;문길주;김용표
    • 한국입자에어로졸학회지
    • /
    • 제4권1호
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF

박물관 실내 대기오염물질에 의한 금속 부식 영향 (The metal corrosion caused by museum indoor air pollutants)

  • 강대일
    • 보존과학회지
    • /
    • 제22권
    • /
    • pp.5-14
    • /
    • 2008
  • 본 연구에서는 박물관 내장재료, 유물포장시 사용되는 포장재료에서 나오는 실내대기오염물질로 챔버 테스트 및 오디 테스트를 실시하였다. 오디 테스트 결과 금속에 따라서 목재나 시멘트에 의해 부식되는 형태가 다르게 나타난다는 것을 알 수 있었으며, 금속의 부식에 가장 많은 영향을 미친 목질제품은 18T HS(E0)와 9mm합판(F0,E0)이었으며, 시멘트는 6개월이 지난 시멘트였다. 유해가스 챔버 테스트 결과 대부분의 시편에서 부식이 관찰되었으며, 특히 포름산, 아세트산, 아세트알데히드에서 철, 구리, 청동시편의 부식이 심각하게 진행되었다. 포장재의 폭로실험에서는 저습의 조건에서 표면적으로 큰 변화가 나타나지 않으나, 고습의 조건에서는 금속 시편이 변색되거나 부식되는 현상이 나타났다.

  • PDF