• Title/Summary/Keyword: Air battery

Search Result 279, Processing Time 0.02 seconds

Comparative Analysis of Wind Power Energy Potential at Two Coastal Locations in Bangladesh

  • Islam, Asif;Rahman, Mohammad Mahmudur;Islam, Mohammad Shariful;Bhattacharya, Satya Sundar;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-297
    • /
    • 2015
  • In this study, wind conditions and its energy potential have been assessed by conducting a Weibull analysis of the wind speed data (over the period of 2002-2011) measured from a port city (Mongla) and an isolated island (Sandwip) in Bangladesh. The monthly mean wind speed at Mongla ranged from 1.60 m/s (December) to 2.47 m/s (April). The monthly values of Weibull shape parameter (k) were from 1.27 to 2.53. In addition, the values of the scale parameter (c) and the monthly wind power density ranged from 1.76 to 2.79 m/s and 3.95 to $17.45W/m^2$, respectively. The seasonal mean wind speed data varied from 1.72 (fall) to 2.29 m/s (spring) with the wind power density from 5.33 (fall) to $14.26W/m^2$ (spring). In the case of Sandwip, the results were comparable to those of Mongla, but moderate reductions in all the comparable variables were observed. The wind data results of these two areas have been compared with those of eight other locations in the world with respect to wind power generation scale. According to this comparison, the wind power generation scale for Mongla and Sandwip was adequate for stand-alone small/micro-scale applications such as local household consumption, solar-wind hybrid irrigation pumps, and battery charging.

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Drone Force Deployment Optimization Algorithm For Efficient Military Drone Operations (효율적 군용 드론 작전 운영을 위한 Drone Force Deployment Optimization 알고리즘)

  • Song, Ju-Young;Jang, Hyeon-Deok;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.211-219
    • /
    • 2020
  • One of the major advancements of the Fourth Industrial Revolution is the use of Internet of Drones (IoD), which combines the Internet of Things (IoT) and drone technology. IoD technology is especially important for efficiently and economically operating C4ISR operations in actual battlefields supporting various combat situations. The purpose of this study is to solve the problems of limited battery capacity of drones and lack of budgeting criteria for military drone transcription, introduction, and operation. If the mission area is defined and corresponding multi-drone hovering check points and mission completion time limits are set, then an energy and time co-optimized scheduling and operation control scheme is needed. Because such a scheme does not exist, in this paper, a Drone Force Deployment Optimization (DFDO) scheme is proposed to help schedule multi-drone operation scheduling and networked based remote multi-drone control.

Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype (태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가)

  • Yi, Kyonghwa;Kim, Keumwha
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.

Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders (전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향)

  • Choi, Woonghee;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2016
  • $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.

Preparation of Sintering Aid for Li7La3Zr2O12 Solid Electrolyte by Heat-treatment of Polymeric Precursors Containing Li and B (Li과 B이 포함된 폴리머 전구체의 열처리에 의한 Li7La3Zr2O12 고체전해질의 소결조제 합성)

  • Shin, Ran-Hee;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, the compound $Li_3BO_3$ (LBO) is intended to be prepared by a polymeric complex method as a sintering aid for the densification of $Li_7La_3Zr_2O_{12}$ (LLZ) solid electrolyte. A polymeric precursor containing Li and B is heat-treated in an air atmosphere at a temperature range between $600^{\circ}C$ and $800^{\circ}C$. Instead of LBO, the compound $Li_{2+x}C_{1-x}B_xO_3$ (LCBO) is unexpectedly synthesized after a heat-treatment of $700^{\circ}C$. The effect of LCBO addition on sintering behavior and ion conductivity of LLZ is studied. It is found that the LCBO compound could lead to significant improvements in the densification and ionic conductivity of LLZ compared to pure LLZ. After sintering at $1100^{\circ}C$, the density of the LLZ-12wt%LBO composite is $3.72g/cm^3$, with a high Li-ion conductivity of $1.18{\times}10^{-4}Scm^{-1}$ at $28^{\circ}C$, while the pure LLZ specimen had a densify of $2.98g/cm^3$ and Li-ion conductivity of $5.98{\times}10^{-6}Scm^{-1}$.

Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries (리튬 전지에서 산소, 황의 물리화학적 거동)

  • Park, Dong-Won;Kim, Jin Won;Kim, Jongwon;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • Of late, the development of advanced batteries with high power density and capacity has been indispensible for pushing ahead with much wider applications to electric vehicles and smart IT devices. However, a conventional Li-ion battery contains a limited energy density due to various technological challenges such that other types of Li batteries including Li-S and Li-air have been extensively studied due to their interestingly high energy capacities. Sulfur and oxygen, of which both are cathode materials, showing similar physicochemical characteristics have widely been available which may also contribute to the commercialization of these batteries. In this review, we introduce some perspectives in improving these advanced Li batteries through several approaches such as the provision of porous cathode structures, the optimization of cathode-electrolyte interfaces and the modification of Li anodes.

Thwarting Sybil Attackers in Reputation-based Scheme in Mobile Ad hoc Networks

  • Abbas, Sohail;Merabti, Madjid;Kifayat, Kashif;Baker, Thar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6214-6242
    • /
    • 2019
  • Routing in mobile ad hoc networks is performed in a distributed fashion where each node acts as host and router, such that it forwards incoming packets for others without relying on a dedicated router. Nodes are mostly resource constraint and the users are usually inclined to conserve their resources and exhibit selfish behaviour by not contributing in the routing process. The trust and reputation models have been proposed to motivate selfish nodes for cooperation in the packet forwarding process. Nodes having bad trust or reputation are detected and secluded from the network, eventually. However, due to the lack of proper identity management and use of non-persistent identities in ad hoc networks, malicious nodes can pose various threats to these methods. For example, a malicious node can discard the bad reputed identity and enter into the system with another identity afresh, called whitewashing. Similarly, a malicious node may create more than one identity, called Sybil attack, for self-promotion, defame other nodes, and broadcast fake recommendations in the network. These identity-based attacks disrupt the overall detection of the reputation systems. In this paper, we propose a reputation-based scheme that detects selfish nodes and deters identity attacks. We address the issue in such a way that, for normal selfish nodes, it will become no longer advantageous to carry out a whitewash. Sybil attackers are also discouraged (i.e., on a single battery, they may create fewer identities). We design and analyse our rationale via game theory and evaluate our proposed reputation system using NS-2 simulator. The results obtained from the simulation demonstrate that our proposed technique considerably diminishes the throughput and utility of selfish nodes with a single identity and selfish nodes with multiple identities when compared to the benchmark scheme.

The Characterization of New Type of Alkaline Fuel Cell using Hydrogen Storage Alloys (수소저장합금을 이용한 신개념의 알칼라인 연료전지의 특성에 관한 연구)

  • Kim, Jin-Ho;Lee, Ho;Lee, Han-Ho;Lee, Paul S.;Lee, Jal-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.135-142
    • /
    • 2002
  • 본 연구는 Chemical hydride 형태의 수소발생제를 포함한 액체연료를 이용한 신개념의 알칼라인 연료전지의 특성을 분석하였다. Chemical hydride는 연료전지의 수소공급원으로써 사용될 수 있으며, 본 연구팀은 KOH 전해질에 수소발생제인 Sodium Borohydride ($NaBH_4$)를 첨가하여 제조된 액체연료를 알칼라인 연료전지에 공급함으서 상온에서 매운 우수한 전기 화학적 성능결과를 얻을 수 있었다. 이때 음극 찰물질로 $ZrCr_{0.8}Ni_{1.2}$ 수소저장합금이 사용되었으며, 양극은 방수처리된 카본지 위에 분산된 Pt/C 가 사용되었고, air가 latm으로 양극에 공급되었다. 음극에 대한 XRD 분석결과 음극에서의 산화에 의해 Sodium Borohydride ($NaBH_4$)가 분해되어 수소가 발생되며, 연속적으로 액체연료가 주입되어도 전지가 작동하는 것을 확인할 수 있었다. 이때 에너지밀도는 6,000 Ah/kg (for $NaBH_4$ or $KBH_4$)이다.