• Title/Summary/Keyword: Air backwashing

Search Result 23, Processing Time 0.019 seconds

A Study on Backwashing of Granular Fiters Used in Water Treatment (정수처리를 위한 여과지의 역세척에 관한 연구)

  • Lee, Jung Taek;Ahn, Jong Ho;Choi, Keun Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.61-72
    • /
    • 1999
  • To obtain the experimental data for design and operation of actual filtration processes, a sand filter and three kinds of dual media filters in pilot-plant scale were operated in this study. We analyzed the effect of filter medium composition on the filter performance and the effects of backwash water flow rates, length of stream line and air flow rate on the filter backwash efficiency. We also compared the efficiencies of the combined air-water backwashing and the water backwashing in dual media filters. As the backwash water flow rates or the length of stream line increased, the final turbidity of backwash water was decreased and the filtration duration time after backwash was increased. In the case of the combined air-water backwashing, the backwash water quantity needed for backwashing the dual media filters could be decreased. The total volume of filtered water for the dual media filters during filter run was over three times larger than that for the sand filter. The dual media filters could be operated at a high filtration rate of 360 m/day.

  • PDF

A Study of Attached Biomass Back Washing in Fixed Film System (고정 생물막공법에서 부착미생물의 역세에 관한 연구)

  • 이창근;김정숙
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.219-224
    • /
    • 1997
  • The cloging phenomenon in the fixed film reactor Is shown when biomass growth Is excessive for long operating time. In addition, effluent water Quality gets worse because of detachment of biomass. In this study, we conducted air-backwashing to sustain biomass In reactor to complement these defects. The results of experimental are showed In the following conclusion. The detachment rate was 19.5 - 38.0% when the organic loading rate was 0.40 - 1.32 kg COD/$m^3$/day, the k - backwashing Intensity was 2 L/min(6.7 $m^3$/$m^2$/hrl and the backwashing time was 15 - 19 seconds. And the detachment rate was 32.2 - 58.6 % when the organic loading rate was 1.37 - 2.27 kg COD/$m^2$/day, the backwashing time was 1 - 12 minutes. As orgnic loading rate and backwashing time ale Increased, detachment of fixed biomass Is Increased. The detachment equation with detachment rate(DR, %), backwashing time(BWT, min), fixed biomass concentration(FB. mg/L), and organic leading rate(OLR, kg COD/ms/day) through multiple linear regession was given by the following equation: DR : 17.964 $BWT^{0.1407} FB^{0.0597} OLR^{0.1946}$

  • PDF

Removal Characteristics and Mass Balance Analysis of Mixed VOCs in Trickle Bed Air Biofilter Using Backwashing Operation (역세척공정을 이용한 Trickle Bed Air Biofilter의 혼합VOCs 분해특성 및 물질수지 고찰)

  • Kim, Dae-Keun;Sorial, George A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.503-511
    • /
    • 2009
  • VOC mixture was fed to a trickle bed air biofilter (TBAB) with step-change in influent mixture concentrations from 50 ppmv to 1,000 ppmv, corresponding to loadings of $5.7\;g/m^3/hr$ to $114.1\;g/m^3/hr$. VOC mixture was an equimolar ratio of two aromatic VOCs, i.e., toluene and styrene, and two oxygenated VOCs, i.e., methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). The TBAB system employed backwashing as biomass control. The experimental results showed that a critical loading rate for VOC mixture removal was determined to be about $60\;g/m^3/hr$, and critical loading rates for individual VOCs in the mixture were different. Specifically, toluene content in the mixture played a major role in the biofilter overall performance. As VOC mixture was fed beyond the critical loading rate, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing was delayed, which was a critical factor in the biofilter performance. In the mass balance analysis, 63.8% of the carbon equivalent in VOCs removal was used for $CO_2$ production during the experimental runs. The 82.6% nitrogen utilized in the biofilter was contributed to microbial cell synthesis. The obtained results were compared against consistently high efficient performance of TBAB for VOC mixture by employing backwashing as biomass control.

Transmembrane Pressure of Backwashing, Filtration/Relaxation and the Sinusoidal Flux Continuous Operation Modes for Submerged Plate Membrane (역세척, 여과/이완 및 사인파형 연속투과 운전방식에 따른 침지형 평막의 막간차압)

  • Kim, Jae Hyo;Kim, Eun Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.216-222
    • /
    • 2019
  • In this study, permeation experiments were conducted using naturally circulating spherical beads, backwashable plate membrane and the air supplied from the bottom of the MBR. The activated sludge solution was maintained at 8,000 mg/L of MLSS and compared transmembrane pressure (TMP) with respect to FR (filtration and relaxation), FR/BW (filtration and relaxation/backwashing), SFCO (sinusoidal filtration continuous operation) and SFCO/BW (sinusoidal filtration continuous operation/backwashing). As the backwashing flux decreased from 47 to $14L/m^2{\cdot}hr$, the TMP increased generally, but the TMP of FR system increased significantly comparing with SFCO. In addition, the backwashing method reduced more TMP comparing to the cleaning method using spherical beads, and it was confirmed that the operation method using the spherical beads and the backwashing simultaneously is more effective than each method.

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.

Pre-treatment of River Water Using Biological Aerated Filtration (호기성 생물여과 공정을 이용한 하천수 전처리)

  • Choi, Dong-Ho;Choi, Hyung-Joo;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • When polluted stream water was treated with biological aerated filter(BAF) in pilot plant, all operation with 90, 60, 45 and 30 min of EBCT at fixed $0.1m^3air/m^2min$ of aeration showed 80% or higher treatment efficiency of particle materials(SS, turbidity and Chl.-a) and 85% or higher efficiency of ammonia nitrogen removal. It was thought that, in case of BOD, biological stability may sufficiently be assured with BAF because grade III or IV inflow water was changed to grade I for outflow water. In case of $COD_{Mn}$, about 60% of removal efficiency was found. When the mechanism of the result was investigated, about 30% of COD materials was produced by algae clogged in the reactor. There was almost no biological decomposition because specific substrate utilization rate of algogenic organic materials were $0.0245mg{\cdot}COD_{Mn}/mg{\cdot}VSS{\cdot}day$, thus partial backwashing(washing the media in 1 m upper of the reactor once a day) was required. It is thought that elevation of removal rate about 10% of $COD_{Mn}$ and 5.5% of $BOD_5$ could be obtained with partial backwashing resulting in assurance of biologically more stable raw water and that saving backwashing water may be significant.

A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant (시흥정수장 막여과시설 시범운영)

  • 김한승;김충환;김학철;윤재경;안효원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

Treatment Characteristics of Rapid filtration Process treating Secondary Clarifier Effluent for Wastewater Reuse (처리수 재이용을 위한 최종침전지 유출수의 급속여과공정 처리특성)

  • Han, Dong-U
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.213-220
    • /
    • 2002
  • This reserch was focused upon experimental study for wastewater reuse and conducted to evaluate optimum operating conditions of rapid filtration process such as filter flow rate, filtration time and backwashing condition for reuse of secondary-treated effluent using the pilot plant installed in real wastewater treatment plant. Also, the experiment on treatment char-acteristics of coagulant-added activated sludge process was performed to compare with activated sludge succeeded to rapid filtration. As the filtration velocity was 100m/day, the filtration time of the rapid filter connected with activated sludge system was revealed to 40 hours. Backwashing of filter was conducted by water wash and air scour. The optimum backwashing time and backwash flow rate were 10min and 10LPM, respectively. The quantity of backwashing water of the rapid filter was about 2% of total treated water.

Pilot Scale Test of Non-woven Fabric Filter Separation Activated Sludge Process for Practical Application on Domestic Wastewater Reclamation (파일럿 규모의 침지식 부직포 여재 활성슬러지 공정의 시스템 처리 특성에 관한 연구)

  • Lee, Sang-Woo;Choi, Chul-hoi;Park, Young-mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.289-294
    • /
    • 2006
  • A pilot scale non-woven fabric filter separation activated sludge system was investigated for practical application on domestic wastewater reclamation and reuse. The system was operated in A/O (Anaerobic/Oxic) process with submerged filter module in the aerobic compartment. In the test of two types of filter materials ($70g/m^2$ and $35g/m^2$), the initial flux (0.42m/d) could be maintained for about three months by regular air backwashing of $70g/m^2$ filter at 0.3m water head. The removal efficiency of organic matter by the system was BOD 93.3%, CODcr 96.3%, SS 96.7%. The effluent quality was 7.8mg/L, 12mg/L and 5mg/L for BOD, CODcr and SS, respectively. The water quality was enough to meet a standard for domestic reuse without human contact. T-N removal efficiency was 49.9% at internal recycle rate 2Q and C/N ratio 3.3. The removal efficiency of T-P was 50% with average effluent concentration, 2.6mg/L.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장내 급속모래 여과지의 이단복합여과시스템으로의 개량)

  • Woo, Dal-Sik;Hwang, Kyu-Won;Kim, Joon-Eon;Hwang, Byung-Gi;Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • This study aimed for developing a two stage dual media filtration system. It has a sand and activated carbon layer above the under-drain system, and a sand layer above the middle-drain system for pretreatment. When retrofitting an old sand filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new plant site. The removal rate of total particle is 93, and 3~7 ${\mu}m$ and 5~15 ${\mu}m$ particles are all 97%. These high removal efficiencies of each pollutant due to adsorption and biological oxidation in activated carbon filter layer. The best backwashing method of two stage dual media filtration system is ascertained by air injection, air + water injection and water injection sequence. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in water treatment plant. The stability of turbidity was maintained below 1 NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual media filtration system, which is almost 2 times higher than existing water treatment plant.