• Title/Summary/Keyword: Air Volume Change

Search Result 272, Processing Time 0.027 seconds

Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels (C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향)

  • You J. S;Hong H;Lee O. Y;Jin K. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss (코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성)

  • Kim, Young-Sun;Bae, Eun-Ji;Choi, Mun-Jin;Kim, Tae-Wooung;Lee, Geung-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

Experiment on Reduction of Pollutants in Titanium Dioxide Photocatalytic Ventilation System (이산화티탄 광촉매 환기장치의 오염물질 저감 실험)

  • Song, Yong Woo
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, titanium dioxide photocatalyst was applied to the ventilation system to reduce particulate matter and nitrogen oxides (NOx), which are representative indoor harmful substances. A reaction device capable of installing an ultraviolet lamp was designed and manufactured so that the pollutant decomposition effect of the titanium dioxide photocatalyst identified through previous studies could be applied indoors. The reaction device was used on the indoor ventilation system and applied to the Mock-Up test. As a result of the Mock-up test, the NOx reduction performance according to the change in air volume once per hour and five times per hour was confirmed. As a result, it was confirmed that as the number of ventilation increases, the NOx reduction time decreases proportionally, and the reduction performance increases.

Flow Behavior and Mixing Characteristics of Rice Husk/Silica Sand/Rice Husk Ash (왕겨/모래/왕겨 회재의 유동 및 혼합 특성 연구)

  • Kim, Bo Hwa;Seo, Myung Won;Kook, Jin Woo;Choi, Hee Mang;Ra, Ho Won;Yoon, Sang Jun;Mun, Tae Young;Kim, Yong Ku;Lee, Jae Goo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.533-542
    • /
    • 2016
  • We investigate fluidization characteristics of the mixture of rice husk, silica sand and rice husk ash as a preliminary study for valuable utilization of rice husk ash obtained from gasification of rice husk in a fluidized bed reactor. As experiment valuables, the blending ratio of rice husk and sand (rice husk: sand) is selected as 5:95, 10:90, 20:80 and 30:70 on a volume base. Rice husk ash was added with 6 vol% of rice husk for each experiment and air velocity to the reactor was 0~0.63 m/s. In both rice husk/sand and rice husk/sand/ash mixture, the minimum fluidization velocity (Umf) is observed as 0.19~0.21 m/s at feeding of 0~10 vol.% of rice husk and 0.30 m/s at feeding of 20 vol.% of rice husk. With increasing the amount of rice husk up to 30 vol.%, $U_{mf}$ can not measure due to segregation behavior. The mixing index for each experiment is determined using mixing index equation proposed by Brereton and Grace. The mixing index of the mixture of rice husk/sand and rice husk/sand/ash was 0.8~1 and 0.88~1, respectively. The optimum fluidization condition was found for the good mixing and separation of rice husk ash.

Lipoid Pneumonia After Aspiration of Squalene$^{(R)}$ in Rabbit (토끼에서 Squalene$^{(R)}$ 흡인에 의한 지방성 폐렴)

  • Lee, Seong-Eun;Baik, Jae-Joong;Chung, Yeon-Tae;Chang, Hee-Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • Background : Recently, there are many patients with lipoid pneumonia by ingestion of shark liver oil in Korea, but only a few animal experimentations have been carried out. The purpose of this study is to evaluate sequential change of the lung after aspiration of shark liver oil and to provide the radiologic-pathologic correlation. Methods: A single intratracheal administration of shark liver oil was given to 14 white rabbits. They were then sacrificed sequentially from 1 week to 6 weeks after injection. We investigated the HRCT and pathologic findings Results: One was sudden death immediately after injection. Six of the 13 rabbits showed pneumonic infiltrations on the HRCT. There were air space consolidation with air-bronchogram on the HRCT of the first week. They were associated with the volume loss in the 4th week, and the traction bronchiectasis in the 6th week. The important pathologic findings were peribronchial alveolar inflammation with septal widening and cuboidal metaplasia of the alveolar wall. The number of macrophages in an alveoli was peaked in the second week and then gradually decreased. On the 6th week, we could find the proliferation of fibroblasts. Conclusion: We can prove the development of lipoid pneumonia after aspiration of squalene by animal experimentation, and the understanding of HRCT and pathologic findings may be helpful in proper evaluation of pneumonia due to aspiration of fish-extracted lipid.

  • PDF

Quality Characteristics of Sponge Cake with Addition of Laver Powder (김 분말을 첨가한 스폰지 케이크의 품질 특성)

  • 권병민;전성운;김동수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1278-1284
    • /
    • 2003
  • This study was carried out to investigate the optimum conditions for making “sponge cake” with addition of ingredient, laver powder, and the quality characteristics of a new sponge cake. The moisture contents of sponge cake with 2, 4, 6% laver powder did not change but with 8 and 10%, the moisture contents increased to 28.89% and 30.69%, respectively. While specific gravity increased to 0.674 (control 0.493) when 10% laver powder was added, but volume was decreased. Most abundant mineral was Ca, followed by Na, Fe, Mn, Cu and Zn. The crust color degree of sponge cake with laver powder showed low marks on L, a, b. The crumb color degree showed low marks on L, b while “a” degree redness indicated highest marks with 4% laver powder. When it was seen under the microscope, the air cell numbers were decreased but the cell size became bigger. More free amino acid was contained when the laver powder was added. L-glutamic acid, L-alanine, L-aspartic acid and L-leucine were the major free amino acids. Hardness, springiness, cohesiveness, gumminess, chewiness and resilience degree of sponge cake with addition of laver power were higher than those of control. The sensory evaluation indicated that addition of 2% laver powder enhanced most mouth feeling, appearance, hardness, moistness, flavor and overall acceptability.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Effect of Na Salt on the Formation of MgO Obtained from Mg(OH)2 by Precipitation Method (침전법으로 제조된 Mg(OH)2의 잔류 Na염이 MgO 입자 형성에 미치는 영향)

  • Lee, Dong-Hyun;Ryu, Seung-Bom;Kim, Dae-Sung;Lim, Hyung-Mi;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • The particle size of MgO was examined as a function of the Na content in $Mg(OH)_2$ powders and the calcination temperature. $Mg(OH)_2$ suspension was obtained by dropwise precipitation of $Mg(NO_3)_2{\cdot}6H_2O$ and NaOH solutions. The suspension was diluted by varying the dilution volume ratio of distilled water to $Mg(OH)_2$ suspension to change the Na salt concentration in the suspension. $Mg(OH)_2$ slurry was filtered and dried at $60^{\circ}C$ under vacuum, and then its $Mg(OH)_2$ powder was calcined to produce MgO with different amount of Na content at $500\sim900^{\circ}C$ under air. Investigation of the physical and chemical properties of the various MgO powders with dilution ratio and calcination temperature variation was done by X-ray diffraction, transmission electron microscopy, BET specific surface area and thermal gravimetric analysis. It was observed that MgO particle size could depend on the condition of calcination temperature and dilution ratio of the $Mg(OH)_2$ suspension. The particle size of the MgO depends on the Na content remaining in the $Mg(OH)_2$ powder, which powder was prepared by changing the dilution ratio of the $Mg(OH)_2$ suspension. This change increased as the calcination temperature increased and decreased as the dilution ratio increased. The growth of MgO particle size according to the increase of temperature was more effective when there was a relatively high content of Na. The increase of Na content lowered the temperature at which decomposition of $Mg(OH)_2$ to MgO took place, thereby promoting the crystal growth of MgO.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF