• 제목/요약/키워드: Air Velocity

검색결과 2,853건 처리시간 0.029초

분위기유속에 따른 확산화염내 매연거동파악 (Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity)

  • 최재혁;박원석;윤석훈;오철;김명환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

협소 사각유로에서 공기-물 대향류 유동한계 (Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels)

  • 김병주
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

난류확산화염의 화염구조와 연소특성에 관한 실험적 연구 (An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I))

  • 최병륜;장인갑;최경민
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

불균일한 풍속분포에 따른 응축기의 열전달 성능 변화 (Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow)

  • 이원종;정지환
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

가솔린.메탄의 연소특성 비교 (Comparison of the Combustion Characteristics of Methane-Air and Gasoline-Air Mixtures)

  • 박명호
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.7-11
    • /
    • 2002
  • Comparison of the combustion characteristics of methane-air and gasoline-air mixtures has been conducted experimentally by a spherical bomb technique. The results indicate 1) the burning velocity of gasoline is slightly higher than that of methane, but their basic behavior of combustion characteristics, positive dependence on temperature and negative one on pressure, are the same, and 2) 20 vol.% addition of hydrogen to methane enhances the burning velocity by about 30%, but does not come to reverse the tendency of pressure dependence to that of pure hydrogen.

  • PDF

Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow

  • Kim, Woo-Tae;Kang, Shin-Jae;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1376-1385
    • /
    • 2000
  • This study investigates spray characteristics before and after wall impingingment of gasoline spray in suction air flow. For this study, a rectangular model intake port was made of acrylic glass, and suction air was generated by using the forced air blower contrariwise. The injector for this study was a pintle-type port gasoline injector in which an air-assist adaptor is installed to supply assisted air. A PDPA system was employed to simultaneously measure the size and velocity of droplets near the wall. Measured droplets are divided into "pre-impinging droplets"with positive normal velocity and "post-impinging droplets"were negative normal velocity for the suction flow. The velocities, size distributions and Sauter mean diameter(SMD) of pre-and post-impinging droplets for varions injection angles and air-assists are comparatively analyzed.

  • PDF

이중 취출구에 의한 온풍난방시의 열환경 개선 (Improvement of Thermal Enviromental by Two Air Out in Hot Air Heating)

  • 장인성;김종수
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.209-217
    • /
    • 1997
  • The objective of this paper is to improve a discomfort caused by the unequal airflow and vertical temperature difference by buoyancy of the supplied hot air in the conventional hot air heating system. In order to the model experiment we manufactured the hot air heater with two air outlet and a model room. We observed the temperature, velocity and airflow distribution and calculated values of PMV and PPD using mean value of central verticality section's air temperature and velocity. We could improve distribution of vertical temperature and velocity at the central section of the model room owing to correlation of hot air of two air outlet.

  • PDF

바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향 (Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space)

  • 정광섭;한화택;홍승재
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF

회전하는 타이어 내부공기의 유동특성에 관한 실험적 연구 -무부하 회전구동 타이어- (An Experimental Study on the Characteristics of Air Flow Velocity Distritutions Inside a Rolling Tire -Unloaded Rolling Tire-)

  • 김윤제;조정현
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.174-181
    • /
    • 1999
  • in order to elucidate the characteristic of velocity distribution of the cavity air. Exploratory tests were conducted on an unloaded rolling radial tire operated at various speeds and inflation pressure. A hot-wire anemometer, rotating with the tire, was used to measure the flow velocity inside the tire cavity. Tow different types of experiments were performed ; one for the effects of rolling speed with constant inflation pressure, the other for the various cavity pressures with constant rolling speed. Experimental results are given as plots of the mean velocity distributions versus the distance from the rim. It is observed that the magnitude of mean velocity in the cavity air shows increasing natures with the increasing of the inflation pressures and rolling speeds.

  • PDF