• Title/Summary/Keyword: Air Tool

Search Result 809, Processing Time 0.028 seconds

A Numerical Study of the Air Quality Inside Automobiles According to the HVAC System Operating Conditions (HVAC 작동특성에 따른 자동차 실내 공기질 평가에 관한 수치해석적 연구)

  • Yoon, Seonghyun;Seo, Jinwon;Choi, Yunho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-309
    • /
    • 2014
  • When using an automotive heating, ventilation, and air conditioning (HVAC) system, we can obtain fresh outside air while maintaining the interior vehicle temperature. In this study, a correction equation considering experimental data for automotive indoor air leakage is defined to simulate the ratio of fresh air to recirculated air in the automobile cabin. With this correction equation, numerical results are compared with experimental data and validated. The $CO_2$ concentration in the automotive cabin is evaluated by considering various boarding conditions and mass flow rates of the HVAC system. The $CO_2$ concentration model derived in this study is expected to be used to control the effective air conditioning and become a basic research tool for automotive air quality control system development.

Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel (탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가)

  • Jung, Sung-Sil;Moon, Je-Se;Lee, Dae-Yeol;Youn, Kuk-Tae;Park, Chun-Dal;Song, Jae-Sun
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.291-296
    • /
    • 2013
  • SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.

The Development of Single-Step UV-NIL Tool Using Low Vacuum Environment and Additive Air Pressure (저진공 Single-step UV 나노임프린트 장치 개발)

  • Kim K.D.;Jeong J.H.;Lee E.S.;Bo H.J.;Shin H.S.;Choi W.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.155-156
    • /
    • 2006
  • UV-NIL is a promising technology for the fabrication of sub-100 nm features. Due to non-uniformity of the residual layer thickness (RLT) and a strong possibility of defects, many UV-NIL processes have been developed and some are commercially available at present, most are based on the 'step-and-repeat' nanoimprint technique, which employs a small-area stamp, much smaller than the substrate. This is mainly because, when a large-area stamp is used, it is difficult to obtain acceptable uniform residual layer thickness and/or to avoid defects such as air entrapment. As an attempt to enable UV_NIL with a large-area stamp for high throughput, we propose a new UV-NIL tool that is able to imprint 4 inch wafer in a low vacuum environment at a single step.

  • PDF

GIS-supported Evaluation System for Road Traffic-related Air Pollution (도로교통관련 대기오염평가 GIS지원시스템)

  • Pior, Myoung-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.13-25
    • /
    • 2000
  • Road traffic-related environment problems has become now serious problem common in the urban life throughout the world. In this study, a GIS-supported evaluation system has been developed for dealing with the road traffic-related environment problems, especially focusing on air Pollution in the urban areas. The developed system consists lof three essential parts: GIS; traffic-related air pollution simulation model; and the database for potential strategies. In establishing the simulation model, a GIS-supported environment can provide a useful tool for handling a wide range of data characterizing study areas and for preparing more accurate estimation on real locations. Such roles of the GIS-supported system can be helpful to more efficient analysis and more reasonable decision-makings. As a preliminary stage in developing the system, the metropolitan area of Cairo in Egypt was applying into being as a Pilot study to test the Potentiality of the prototype system.

  • PDF

The Effect of Advice Information for Arriving Aircraft Landing Order on Air Traffic Controller's Work Efficiency (도착항공기 착륙순서에 관한 조언정보가 관제사 업무효율에 미치는 영향)

  • Kim, Seyeon;Chai, Hongah;Jung, Hyuntae;Kim, Huiyang;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This paper describes the effect of advice information for arriving aircraft landing order on the air traffic controller's work efficiency. The air traffic control simulator used in the experiment was modeled on the basis of the aircraft parameters from BADA, gamma-command model and the 4-dimensional trajectory using the Bezier curve. The simulation results show that advice information was helpful for the performance of the work for users who did not have the air traffic control training. On the other hand, in case of users who have experience in air traffic control training, the work efficiency was lowered when the advisory information that does not reflect the user's intention is provided. Therefore, it can be seen that the effect of improving the work efficiency through advice information can be limited depending on the skill level of the air traffic controllers and the complexity of the air traffic situation.

Fractal Manufacturing System (FrMS) based on Autonomous and Intelligent Resource Model (AIR-model) (자율적이고 지능적인 리소스 모델에 기반한 프랙탈 생산시스템)

  • Sin Mun-Su;Jeong Mu-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.348-353
    • /
    • 2006
  • Autonomous and intelligent resource model (AIR-model) defines a building-block of complex systems to pursue value creation by means of diverse resources, referred to as an AIR-unit, and presents a collaboration model with the AIR-units. An AIR-unit represents a piece of resources, such as machines, labor, raw materials, and other assets, considered individually by a complex system as means to accomplish given tasks. It is defined with its own service capability and a goal, and pursues achieving the goal by means of the capability. Moreover, an Air-unit is equipped with autonomy and intelligence, whereby it makes a decision on its course of action on its own initiative. Air-units collaborate on system operations with each other through goal-oriented negotiations. In this research, distinctive features of the AIR-model are addressed and described in detail. Principal components of the AIR-model are also designed via object-oriented modeling techniques. A prototype system based on the AIR-model is finally presented as an embodiment tool of a fractal manufacturing system (FrMS).

  • PDF

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Micro-machining of Glass Air Hole using Ultrasonic Machining (초음파 가공에 의한 미세 에어홀 가공 기술)

  • 김병희;전성건;남권선;김헌영;전병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.48-52
    • /
    • 2004
  • Ultrasonic machining is effective for machining of extreme hard and brittle materials, including glass, ceramic, carbide, graphite. The major machining principle involves the direct hammering as well as the impact of abrasive panicles on the workpiece. Also, it involve cavitation erosion. The general workpiece is flat side. This study attempted micro hole machining of a curved surface of glass tube. Ultrasonic machining is fault of the slow machining speed. An experiment does and got 16 seconds validity machining time as increasing the processing speed. Moreover, entrance crack and surface roughness was similar both machining speed is slow and fast. Several micro hole of glass tube machined using one micro tool, but tool wear is infinitesimal.

  • PDF

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF