• Title/Summary/Keyword: Air Tool

Search Result 814, Processing Time 0.023 seconds

Numerical Simulation of the Thermal Environment inside an Opened Tomb (개방된 고분내부의 열 환경 수치모사)

  • Lee, Kum-Bae;Youn, Young-Muk;Jun, Hee-Ho;Park, Jin-Yang;Ko, Seok-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.872-878
    • /
    • 2006
  • In recent years the importance of the preservation of cultural artefacts like ancient tombs has been widely accepted domestically and internationally as the quality of life improves. However not much technical attention has been paid for the facilities and systems to preserve those artefacts. Even the general understanding of the preservatory environment of the underground space as tombs is poor. As a part of the present study, the temperature and relative humidity inside a selected artefact, Shinkwan-ri tomb, have been monitored for a year round by the present author to improve the understanding of the indoor thermal environment, is pursued to provide a predictive tool of numerical modelling of Shinkwan-ri tomb the opened underground space thermal environment. In this study, predictive numerical modelling of Shinkwan-ri tomb using the Computational Fluid Dynamics, calculate the velocity and temperature distribution and offer basic data which are necessary for the best fitted design of tomb air-conditioning device.

  • PDF

Alternative Strategies to Central Heating Ventilation and Air Conditioning

  • Shrestha, Pramen P.;Prgada, Mythili
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.401-407
    • /
    • 2022
  • Central heating, ventilation and air conditioning (HVAC) is one of the largest consumers of energy in the residential sector. This project explores the use of multiple HVAC units and/or Zoning in a single residence to reduce energy loads. The energy consumption data of a detached single-family home using two HVAC units, one primary for the main house and a secondary HVAC for a casita, was collected for the same month for two consecutive years, along with details related to the outdoor temperature and the square footage being air-conditioned by each HVAC. A regression algorithm was trained using the above details to find the relation between the parameters. Next, based on the occupancy and usage patterns, the HVAC was redesigned assuming more area under the secondary HVAC unit. The trained algorithm was then used to make energy usage predictions for the revised primary HVAC area, with the assumption that the secondary HVAC unit was turned off. The results were compared with existing energy usage data. It was determined that there were significant energy savings in the second scenario. It is expected that this study and its findings will help future research projects explore more ideas as alternatives to central HVAC, in improving the economic viability of existing options, and in developing a savings calculation tool that will help consumers make informed decisions on their best alternatives to central HVAC.

  • PDF

Evaluating the Competitiveness of Cargo Airports using Best-Worst Method

  • Sara Shishani;Young-Joon Seo;Seok-Joon Hwang;Young-Ran Shin;A-Rom Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.204-206
    • /
    • 2022
  • The global economy and the air transport business have been affected since the spread of the COVID-19 pandemic. As countries tighten restrictions on international movements, the growing emphasis on air cargo puts pressure on airports to maintain and upgrade their cargo policies, facilities, and operations. Hence, ensuring the competitiveness of cargo airports becomes pivotal for airports survival under the volatile global demand. The study aims to evaluate the importance of the competitiveness factors for cargo airports and identify areas for further improvement. The study applies the Best-Worst Method (BWM) to assess the cargo airports' competitiveness factors: 'Transport Capacity,' 'Airport Operations and Facility Capacity,' 'Economic Growth,' 'Financial Performance,' and 'Airport Brand Value.' The selected airports include Heathrow Airport, Aéroport de Paris-Charles de Gaulle, Hong Kong International Airport, and Incheon International Airport. The results identify 'Transport Capacity' as the most significant competitiveness factor, and Hong Kong International Airport the best performing cargo airport. This research forms a reference framework for evaluating cargo airports' competitive position, which may help identify airports' relative strengths and weaknesses. Moreover, this framework can also serve as a tool facilitating the strategic design of airports that may accommodate both air cargo and passenger demand flexibly under the demand uncertainty.

  • PDF

A Study on Operation Concept of Naval Surface to Air Defense System with Complex Assets (함대공 방어체계 복합자산 운용개념 연구)

  • Taegu Kim;Woongjae Na;Seoyeon Yang;Yeojin Park;Donghyuk Shim;Da-Bin Ryu;Nahae Yun;In-Chul Park;Lae-Eun Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.190-198
    • /
    • 2023
  • The purpose of this study was to propose an operational concept for a ship in a fleet equipped with an interceptor missile system, a naval surface to air defense system, and to develop a simulation program that reflects it. The results of the defense activities of other ships in the fleet can be reflected by receiving information about the status of the enemy missiles. The allocation of defensive assets is based on the survival probability of the ship, not on the destruction of enemy attacks, which can be obtained as the product of the expected survival probability for each enemy missile. In addition, the concept of predicted survivability was introduced to assess the loss of future defense opportunities that would result from assigning a new command. A simulation program was also developed as a tool for realizing the proposed concept of operations, which generated cases.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Lightweight Suspension Module Development for Electric Vehicle (전기 자동차용 경량화 서스펜션 모듈 개발)

  • Jung, Yoon-Sik;Shin, Heon-Seop;Rhim, Sungsoo;Choi, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1015-1019
    • /
    • 2013
  • To improve the energy efficiency and ride quality of an electric vehicle, it is highly desirable to develop a lightweight suspension system with high travel ratio. Air suspension systems with a rubber tube are often considered optimal for such requirements. In this study, a new lightweight air suspension system with high travel ratio was developed for use in electric vehicles. Furthermore, an FE-based multi-flexible-body dynamics (MFBD) model of the suspension system was developed as a tool for improving the design of an actual suspension system. The MFBD model includes the FE modeling of the rubber tube module as well as other essential parts of the air suspension system. The system parameters for the model were obtained from various experiments. The validity of the developed MFBD model was shown through a comparison between the experimental results and the simulation results.

Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools (핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교)

  • Jeong, Seok-Kwon;Lee, Dan-Bi;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

Development and Prospects of Environmental Health Indicators in Korea (우리나라 환경보건지표 개발현황과 전망)

  • Lee, Young-Mee;Jung, Soon-Won;Choi, Wookhee;Park, Kyung-Hwa;Lee, Chul-Woo;Yu, Seung-Do;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.5
    • /
    • pp.293-301
    • /
    • 2016
  • Objectives: This paper presents the current development progress of environmental health indicators (EHIs) in the Republic of Korea and discusses the utilization, limitations and prospects of EHIs. Methods: The development process and assessment criteria of EHIs were established based on the DPSEEA (Driving force-Pressure-State-Exposure-Effect-Action) framework with reference to that of the World Health Organization-Europe. In order to explore the applicability of EHIs, a case study was performed to compare the atmospheric environmental health status between the Republic of Korea and European region countries using six indicators. Results: Through the development process, 23 indicators in five areas including air quality, indoor air quality, climate change, chemicals, and water quality were developed, mostly using national statistical data. As a result of the case study comparing environmental health indicators in air quality between the Republic of Korea and Europe, it could be useful to understand the different situation of air pollution source, emission, exposure and health effects. Conclusion: In order for EHIs to compare environmental health status and be used as an environmental health policy development tool for vulnerable areas and related factors, it is necessary to develop further indicators for various issues other than air quality and conduct additional research on their interpretation and related implications, such as policy implementation effects.

Design of Unconstrained Baby Monitoring System Based on a Doppler Radar and an Air Mattress (도플러 레이더와 에어 매트리스를 이용한 무구속 방식의 신생아 감시 장치 설계)

  • Yang, Seong-Soo;Cho, Sung-Pil;Park, Ho-Dong;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.177-184
    • /
    • 2014
  • Continuous monitoring of heart rates and respiratory rates for newborns or infants is very important since the abnormal breathing and heart problems can threaten the life of newborns or infants. A noncontact baby monitoring system based on a Doppler radar and an air mattress was designed. The Doppler radar was used to acquire respiratory signals and the air mattress was employed to obtain heart rates. The performance of the designed system was evaluated using a commercialized infant simulator ($Simbaby^{TM}$) and a respiration belt transducer was used to measure respiration rates as a reference. Results for respiratory rates revealed that the correlation coefficients between I-and Q-channel and the respiration belt were 0.84 and 0.91 and the mean ${\pm}$ standard deviations of errors between them were $1.66{\pm}1.92$ (bpm) and $0.88{\pm}1.65$ (bpm). Heart rates showed that the correlation coefficient between air mattress and set value of the simulator was 0.73 and the mean ${\pm}$ standard deviation of errors between them was $1.09{\pm}3.45$ (bpm). These results indicate that the designed system holds the potential as an effective monitoring tool for continuous monitoring heart rates and respiratory rates of newborns or infants.

Application of MODIS Satellite Observation Data for Air Quality Forecast (MODIS 인공위성 관측 자료를 이용한 대기질 예측 응용)

  • Lee, Kwon-Ho;Lee, Dong-Ha;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.851-862
    • /
    • 2006
  • Satellites have been valuable tool for global/regional scale atmospheric environment monitoring as well as emission source detection. In this study, we present the results of application of satellite remote sensing data for air quality forecast in Seoul metropolitan area. AOT (Aerosol Optical Thickness) data from TERRA/MODIS (Moderate Resolution Imaging Spectre-radiometer) satellite were compared to ground based $PM_{10}$ mass concentrations, and used to estimate the possibility of the aerosol forecasting in Seoul metropolitan area. Although correlation coefficient (${\sim}0.37$) between MODIS AOT products and surface $PM_{10}$ concentration data was relatively low, there was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for air quality forecasting. The MODIS AOT data with trajectory forecasts also can provide information on aerosol concentration trend. The success rate of the 24 hour aerosol concentration trend forecast result was about 75% in this study. Finally, application of satellite remote sensing data with ground-based air quality observations could provide promising results for air quality monitoring and more exact trend forecast methodology by high resolution satellite data and verification with long term measurement dataset.