• Title/Summary/Keyword: Air Tasking Order

Search Result 6, Processing Time 0.019 seconds

Proposal of a framework for evaluating the operational impact of cyber attacks on aviation weapons systems(EOICA) (항공무기체계 사이버공격에 대한 작전영향성평가 프레임워크 제안)

  • Hong, Byoung-jin;Kim, Wan-ju;Lee, Soo-jin;Lim, Jae-sung
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.35-45
    • /
    • 2020
  • Cyber attacks on the aviation weapon system, a state-of-the-art asset, have become a reality and are approaching as a constant threat. However, due to the characteristics of embedded software of the current aviation weapon system, it is managed and operated without connection to the network in peacetime, so the response management to cyber attacks is relatively weak. Therefore, when a cyber attack becomes a reality, it is urgent to prepare and evaluate measures for the adverse effects that such attack will have on the execution of the Air Tasking Order(ATO). In this paper, we propose a framework for operational impact assessment in order to avoid confusion in ATO execution and systematic response to cyber attacks on aviation weapons systems. The proposed framework is designed to minimize the negative impact on operations against cyber attacks that may occur under no warning by analyzing the impact on air operations for each aviation weapon system and standardizing countermeasures for this. In addition, it supports the operational commander to make a quick decision to command for the execution of the operation even in a situation where a cyber attack occurs.

A Study on Methodology for Air Target Dynamic Targeting Applying Machine Learning (기계학습을 활용한 항공표적 긴급표적처리 발전방안 연구)

  • Kang, Junghyun;Yim, Dongsoon;Choi, Bongwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.555-566
    • /
    • 2019
  • In order to prepare for the future warfare environment, which requires a faster operational tempo, it is necessary to utilize the fourth industrial revolution technology in the field of military operations. This study propose a methodology, 'machine learning based dynamic targeting', which can contribute to reduce required man-hour for dynamic targeting. Specifically, a decision tree algorithm is considered to apply to dynamic targeting process. The algorithm learns target prioritization patterns from JIPTL(Joint Integrated Prioritized Target List) which is the result of the deliberate targeting, and then learned algorithm rapidly(almost real-time) determines priorities for new targets that occur during ATO(Air Tasking Order) execution. An experiment is performed with artificially generated data to demonstrate the applicability of the methodology.

A Study on the Criteria to Decide the Number of Aircrafts Considering Operational Characteristics (항공기 운용 특성을 고려한 적정 운용 대수 산정 기준 연구)

  • Son, Young-Su;Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • In this paper, we consider a method to access the number of aircraft requirement which is a strategic variable in national security. This problem becomes more important considering the F-X and KF-X project in ROKAF. Traditionally, ATO(Air Tasking Order) and fighting power index have been used to evaluate the number of aircrafts required in ROKAF. However, those methods considers static aspect of aircraft requirement. This paper deals with a model to accommodate dynamic feature of aircraft requirement using absorbing Markov chain. In conclusion, we suggest a dynamic model to evaluate the number of aircrafts required with key decision variables such as destroying rate, failure rate and repair rate.

Research on Cyber Kill Chain Models for Offensive Cyber Operations (공세적 사이버 작전을 위한 사이버 킬체인 모델 연구)

  • Seong Bae Jo;Wan Ju Kim;Jae Sung Lim
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • Cyberspace has emerged as the fifth domain of warfare, alongside land, sea, air, and space. It has become a crucial focus for offensive and defensive military operations. Governments worldwide have demonstrated their intent to engage in offensive cyber operations within this domain. This paper proposes an innovative offensive cyber kill chain model that integrates the existing defensive strategy, the cyber kill chain model, with the joint air tasking order (ATO) mission execution cycle and joint target processing procedure. By combining physical and cyber operations within a joint framework, this model aims to enhance national cyber operations capabilities at a strategic level. The integration of these elements seeks to address the evolving challenges in cyberspace and contribute to more effective jointness in conducting cyber operations.

Routing Performance Improvement Based on Link State Prediction of Trajectory in Airborne Backbone Network (이동 궤적을 고려한 링크 상태 예측을 통한 공중 백본 네트워크 라우팅 성능 향상 방법)

  • Shin, Jin-Bae;Choi, Geun-Kyung;Roh, Byeong-Hee;Kang, Jin-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.492-500
    • /
    • 2011
  • The airborne backbone network(ABN) provides communication transport services between airborne nodes, surface nodes and satellite nodes. Such ABN is generally constructed with wide-body and high-capacity planes such as AWACS, which can fly long-term along pre-defined flight paths. In this paper, we propose an efficient method to improve routing performances by reconfiguring routing path before link failure based on the prediction of link state with the information of pre-defined backbone nodes' trajectories. Since the proposed method does not need additional information exchange between airborne nodes in order to acknowledge the link failure, it can be effectively used for airborne backbone network with limited bandwidths.

A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations (다수의 인공위성-지상국 간 통신 스케줄 최적화 모형)

  • Jeong, Eugine;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.