• Title/Summary/Keyword: Air Resistance

Search Result 1,589, Processing Time 0.028 seconds

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.

A comparison study on the deck house shape of high speed planing crafts for air resistance reduction

  • Park, Chung-Hwan;Park, Hee-Seung;Jang, Ho-Yun;Im, Namkyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.867-875
    • /
    • 2014
  • Planing crafts were specifically designed to achieve relatively high speeds on the water. When a planing craft is running at high speed, dynamic pressure on the bottom makes the boat rise on the surface of the water. This reduces the area of the sinking surface of the boat to increase air resistance. Air resistance means the resistance that occurs when the hull and deck house over the surface of the water come in contact with the air current. In this paper, we carried out a CFD numerical analysis to find optimal deck houses that decreased air-resistance on the water when planing crafts are running at high speed. We finally developed the deck house shape of high-speed planing crafts that optimally decreased air resistance.

Numerical Study on the Extrapolation Method for Predicting the Full-scale Resistance of a Ship with an Air Lubrication System

  • Kim, Dong-Young;Ha, Ji-Yeon;Paik, Kwang-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2020
  • Frictional resistance comprises more than 60% of the total resistance for most merchant ships. Active and passive devices have been used to reduce frictional resistance, but the most effective and practical device is an air lubrication system. Such systems have been applied in several ships, and their effects have been verified in sea trials. On the other hand, there are some differences between the results predicted in model tests and those measured in sea trials. In this study, numerical analyses were carried out for a model and a full-scale ship. A new extrapolation method was proposed to improve the estimation of the full-scale resistance of a ship with an air lubrication system. The volume of fluid (VOF) method was considered for the numerical models of the air layer. The numerical method was validated by comparing the experimental data on the air layer pattern and the total resistance.

Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box (상자포장 청과물의 송풍저항 특성)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

An air flow resistance model for a pressure cooling system based on container stacking methods (차압예냉에서 청과물 상자의 적재방법에 따른 송풍저항 예측모델 개발)

  • Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong;Lee, Hyo-Jai
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2013
  • The capacity of a pressure fan can be designed based on the air flow resistance of containers packed with fruits and vegetables in a pressure cooling system. This study was conducted to develop an air flow resistance model that was dependent on changes in the air flow rate and the method of stacking containers. The air flow resistance of a container packed with uniformly shaped balls was 1.5 times greater than the sum of the air flow resistance of a vacant container and that of a wire net container packed with only balls. In addition, the air flow resistance increased exponentially as the width of the stacks increased; however, the air flow resistance did not increase greatly as the length and height of the stacks increased, which indicates that the air flow resistance is primarily influenced by the width of the stack in the air flow direction. The air flow resistance in two lines of stacking was up to 17% less than that of the width of the stack. It was also possible to determine the air flow resistance using a function of the air flow resistance through a single container and develop a prediction model. A prediction model of air flow resistance that is dependent on the stacking method and the air flow resistance of a single container was developed.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

The effect of air velocity on the thermal resistance of wool ensembles (풍속변화에 따른 순모의류의 온열특성)

  • 송민규;전병익
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF

A Study on the Insulation of Thermal Clothing Under Dynamic Air Condition (풍속 존재 시 쾌적보온성 의복의 온열특성에 관한 연구)

  • Song, Min-Kyu;Kwon, Myoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.29-37
    • /
    • 2008
  • The purpose of this study was to investigate insulation of thermal clothing under still and dynamic air conditions(with 2.1m/sec air velocity) and decrease of insulation in both conditions, to analyze correlations among them, and to estimate insulation and decrease of insulation using factors, such as fabric insulation, fabric weight, clothing weight, air permeability, and water vapor resistance. A total of 25 kinds of clothing were tested(9 types for suits, 6 types of jacket, 5 types for shirts, and 5 types for trousers). The results of this study were as follows; Thermal resistance of clothing under the dynamic air condition decreased comparing to that of clothing under still air condition in all types of clothing. Decrease in shirts was the biggest(47.5%), followed by suits(39.51%), trousers(37.48%), and jackets(34.49%) in sequence. Thermal resistance of clothing under dynamic air condition showed very high correlation(0.98, p<0.01) with that of clothing under still air condition, followed by thermal resistance of fabric(0.86, p<0.01). Decrease in thermal resistance of clothing showed the highest correlation with air permeability. It didn't show correlation with other factors. Regression analysis showed that fabric thickness would be useful factor for estimating thermal resistance of clothing and air permeability also would be useful factor for estimating decrease in thermal resistance of clothing.