• Title/Summary/Keyword: Air Purification Effectiveness

Search Result 4, Processing Time 0.018 seconds

A Quantitative Analysis of Air Purification Effectiveness on Urban Forest Considering the Spatial Distribution of Pollutant Concentration (오염농도의 공간적 분포를 고려한 도시림의 대기정화기능 계량화)

  • Choi, Chul-Hyun;Lee, Woo-Sung;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.71-85
    • /
    • 2012
  • The purpose of this study is to estimate air purification effectiveness considering the improvement of its methods related atmospheric environment. The air purification effectiveness is estimated in Daegu, one out of Korean Metropolitan cities because air pollution is getting serious in a heavily urbanized area. The absorption of pollutants is calculated by considering spatial heterogeneity that was not considered previous studies and the spatial resolution of air dispersion modeling is also improved by kriging method. According to the type and distribution of urban forest, total 26 kinds of plant communities were distributed with Pinus densiflora community, Pinus densiflora-Quercus mongolica community, Pinus densiflora-Quercus acutissima community and other kinds of communities in the study area. In the results of estimating the $CO_2$ absorption amount for identification of the air purification effectiveness on urban forest, the annual absorption amount was total 108,155t/yr. Also, the annual absorption amounts of $NO_2$ and $SO_2$ were total 183.5 ton and 410.2 ton respectively. The findings from this study can confirm the differences of pollutant absorption by concentration that could not identify if spatial distribution of pollutant concentration had not been considered.

Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process (접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가)

  • Jaemin Woo;Dongjun Kim;Jihun Shin;Gihong Min;Chaekwan Lee;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity (제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능)

  • Kim, Moon-Hyeon;Cho, Il-Hum;Choi, Sang-Ok;Choo, Soo-Tae
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.943-962
    • /
    • 2014
  • Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of $CO_2$ as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of $CO_2$ adsorption at given conditions and those points have been extensively described with literature data. A great body of data of $CO_2$ adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better $CO_2$ adsorbent for PSA processes.