• 제목/요약/키워드: Air Pressure Variation

검색결과 375건 처리시간 0.026초

임의형상을 갖는 납작관에서의 혼합대류 열전달 해석 (Analysis of Mixed Convection Heat Transfer in Arbitrarily Shaped Flat Tubes)

  • 박희용;박경우;이상철
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.398-410
    • /
    • 2001
  • The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with U--shaped grooves are analyzed numerically. The flow and temperature fields are calculated by using the modified SIMPLE algorithm for irregular geometry. One tube specification among the various flat tube exchangers is recommended by considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected tube are investigated. the results show that inlet velocity of coolant flow is the very important factor in heat transfer and pressure drop, and top side is better position than the others as fin cleave to tube.

  • PDF

복합절연물내 기체의 압력 및 고체의 두께변화가 AC 절연파괴에 미치는 영향 분석 (AC Breakdown Analysis of Composite-Insulation by the Thickness of epoxy and the Variation of Pressure)

  • 정해은;김병철;윤재훈;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.194-195
    • /
    • 2007
  • $SF_6$ gas used widely as insulating component in electric power industry has excellent in insulation and arc extinguishing performance in gas-insulated switchgear. However, the concern about eco-friendly alternative gas is currently rising because $SF_6$ gas is one of the main greenhouse gases. In this paper, dry-air and composite-insulation (dry-air+epoxy) as the alternative technology for $SF_6$ gas insulation is studied. Under the gas pressure ranged from 0.1 to 0.6MPa, the breakdown voltage of dry-air were measured in AC electric field. The data of composite-insulation were acquired by changing the thickness of epoxy used in each composite-insulation under the same condition.

  • PDF

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발 (Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제35권3호
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

직선배관에서 균일한 공기 흡입을 하는 오리피스 직경변화에 대한 연구 (A study on the variation of orifice diameter in a straight pipe giving dqual-sampling rate)

  • 김진국
    • 방재기술
    • /
    • 통권24호
    • /
    • pp.17-22
    • /
    • 1998
  • The objective of this paper is to investigate the variation of orifice diameter in a straight pipe which can give equal-sampling rate. This can be utilized for designing orifice in air-sampling smoke detector. The elements which should be considered for designing orifices was presented and the calculation procedure was also given in this paper. The effects of pipe length, the number of orifices, fan pressure was decribed.

  • PDF

3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석 (Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression)

  • 이근식
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

구상 선수 주위의 유동과 기포 공급 효과에 관한 실험적 연구 (On the Variation of Resistance Components due to Air Bubble Blowing on Bulb Surface of a Ship)

  • 임근태;김효철
    • 대한조선학회논문집
    • /
    • 제33권1호
    • /
    • pp.54-64
    • /
    • 1996
  • 편저형 선형의 구상 선수에서 기포를 공급하면 기포가 선저 표면에 공급되고, 기포 공급의 효과로 물과 선저 표면이 직접 접촉하는 면적이 줄어들게 되어 선박의 마찰 저항을 감소시킬 수 있을 것이다. 이를 실험적으로 확인하기 위하여 구상 선수 선형에 대하여, 우선 선수 주변에서의 한계유선을 관측하고, 국부적 압력 분포 및 마찰 응력을 계측하였다. 다음으로, 기포 공급 조건을 바꾸며 실험한 결과, 국부 표면 마찰 저항의 감소를 확인 할 수 있었다. 또한, 기포 공급시 일어나는 운동량 변화가 저항 성분이 되는 것으로 확인되었다. 이러한 실험 결과는 실용 선형에서 기포법으로 저항 감소를 얻어내기 위한 기초적 연구가 될 수 있을 것으로 판단된다.

  • PDF

가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구 (A Study on Cyclic Variation by Idling in Gasoline Vehicle)

  • 한성빈;김성모
    • 에너지공학
    • /
    • 제18권3호
    • /
    • pp.156-162
    • /
    • 2009
  • 내연기관의 연소현상을 연구하는 연구자들에게 엔진 내부의 압력값은 연소과정을 이해 할 수 있는 좋은 데이터가 된다. 본 논문에서는 압력값을 이용하여 스파크 점화기관의 무부하에서의 사이클 연소 변동의 중요한 원인이 무엇인가를 규명한다. 또한 실험기관의 연소실에서 채취한 압력 데이터는 사이클 변동의 연소 해석의 기초 데이터와 연소율 해석 등의 데이터분석을 하는데 사용되었다. 연소변수의 입력변수로써 연료, 공기, 잔류량, 등등이 사이클 변동을 결정하는데 사용되었다.

자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구 (A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine)

  • 정우인;박찬국
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향 (Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch)

  • 이재호;김범준;조대진;윤석주
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.