• Title/Summary/Keyword: Air Preheater

Search Result 35, Processing Time 0.02 seconds

Effect of refrigeration lubricants on the heat transfer performance in the microfin tube evaporator (마이크로핀관 증발기내 전열 성능에 미치는 냉동기유의 영향)

  • Cho, Keumnam;Tae, S.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.61-72
    • /
    • 1999
  • The present study experimentally investigated the effect of refrigeration lubricant on the heat transfer performance in the straight sections and U-bend of a microfin tube evaporator by using R-22/mineral oil and R-407C/POE oil. The apparatus consisted of test section with U-bend, preheater, condenser, oil injection and sampling devices, magnetic pump, mass flow meter etc. The experimental parameters were oil concentration of 0 to 5 wt%, inlet quality of 0.1 to 0.5, mass flux of 219 and $400kg/m^2s$ and heat flux of 10 and $20kW/m^2$. The effects of parameters on the heat transfer coefficients were large in the order of inlet quality, mass flux and heat flux as oil concentration got increased. As oil concentration was increased, heat transfer coefficients were continuously decreased for R-22 and increased by 3% up to the concentration of 1% and then decreased for R-407C under the condition of large inlet quality, and small mass flux and heat flux. But, the heat transfer coefficients were increased up to the concentration of 3% and then decreased for both R-22 and R-407C refrigerants under the opposite conditions. The variation of enhancement factors for R-407C was under 50% of that for R-22 and the variation with respect to the positions in the test section was small. The pressure drops were increased for both R-22 and R-407C refrigerants as oil concentration was increased. The pressure drops for R-407C were smaller by the maximum of 18% than those for R-22.

  • PDF

Applicability to Gas Engine and Small Sized Generator of Low Caloric Synthetic Gas Fuel from Coal Gasification (저발열량 석탄가스화연료의 가스엔진 및 소형발전기 적용연구)

  • Kim Tae-Kwon;Kim Sung-Roon;Jang Jun-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system and small sized generator. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. From the results of engine performance data, we have demonstrated that the engine modified by using the coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. And we have also demonstrated that the generator is well operated with various loads.

  • PDF

The Condensation Heat Transfer of R-22 and R-410A in an Inner Diameter Tube of 1.77 mm (내경 1.77 mm관내 R-22와 R-410A의 응축열전달)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • The condensation heat transfer coefficients of R-22 and R-410A in a small diameter tube were investigated. The main components of the refrigerant loop consist of a receiver, a variable-speed pump, a mass flowmeter, an evaporator (preheater), and a condenser (test section). The test section consists of smooth, horizontal copper tube of 3.38 mm outer diameter and 1.77 mm inner diameter. The refrigerant mass fluxes varied from 450 to $1050\;kg/(m^2s)$ and the average inlet and outlet qualities were 0.05 and 0.95. The main results were summarized as follows : the condensation heat transfer coefficient also increases with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

  • PDF

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Studies on the Sources of Bacterial Contamination in U. H. T. Processed Milk (살균시유(殺菌市乳)의 세균오염원(細菌汚染源)에 관한 연구(硏究))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1980
  • In order to elucidate the source of bacterial contamination during processing U. H. T. milk and to ensure its hygienic control, bacterial numbers were determined each step of the processes on the milks, water, tanks and pipe lines, and environments. The results obtained were as follows. 1. The viable numbers of mesophilic bacteria were $1.2{\sim}1.9{\times}10^7/ml$ of milk in the storage tank and in pipe line connected to the preheater. These were decreased to $7.0{\times}10cells{\sim}3.4{\times}10^2cells/ml$ after preheating and homogenization, and to $1.0{\times}10cells/ml$ after sterilization, then increased up to $1.2{\times}10^2cells/ml$ after packing. 2. The numbers of thermophilic bacteria were $5.0{\times}10cells{\sim}1.0{\times}10^2cells/ml$ of milk before preheating ; $3.0{\sim}5.0{\times}10cells/ml$ after homogenization ; none in the sterilizer and surge tank ; and $1.0{\sim}8.0{\times}10cells/ml$ after packing. 3. The levels of psychrophilic bacteria were $1.0{\sim}3.7{\times}10^6cells/ml$ of milk before preheating ; $1.0{\sim}4.0{\times}10cells/ml$ after homogenization ; $1.0{\times}10cells/ml$ after sterilization ; and $2.0{\times}10cells{\sim}2.5{\times}10^2cells/ml$ after packing. 4. No coliform bacteria were detected after sterilization, while the level before preheating was $2.1{\times}10^4cells{\sim}6.5{\times}10^5cells/ml$ of milk. 5. The level of mesophiles was $3.0{\times}10cells{\sim}7.4{\times}10^2cells$ in the environmental air, water supply, and unfilled packs and bottles ; that of thermophiles $1.0{\sim}3.0{\times}10cells$ in the air and water ; that of psychrophiles $1.0{\times}10cells{\sim}1.0{\times}10^2cells$ in the air, water, packs and bottles ; however no coliform was detected.

  • PDF