• Title/Summary/Keyword: Air Pollution Modeling

Search Result 169, Processing Time 0.023 seconds

An Analysis of Local Wind Field by Location of Industrial Complex using CALMET and ENVI-MET (CALMET 및 ENVI-MET를 이용한 산업단지 입지에 따른 국지 바람장 분석)

  • Song, Dong Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.417-429
    • /
    • 2012
  • In this study, a diagnostic wind model, CALMET and a micrometeorological numerical model, ENVI-MET were used to analyze the wind field in and out of the site designated for the industrial complex around Buron-myeon, Wonju, Gangwon-do. The results of modeling with CALMET showed that the air flow in industrial complex was little affected by the surrounding terrain. And the result of wind field analysis with ENVI-MET showed there are turbulent air flows such as cavity and wake around structures in the industrial complex, which can cause high-air pollution. Therefore, it is necessary to design the industrial complex considering the wind path according to wind directions.

A Study on the Predictability of the Air Pollution Dispersion Model Composed of the Turbulent Parameters (난류특성을 이용한 대기오염확산모델의 예측능에 관한 연구)

  • Park, Ki-Hark;Yoon, Soon-Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2001
  • Gaussian dispersion model is the most widely used tool for the ground level air pollution simulation. Though in spite of the convenience there are important problems on the Pasquill- Gifford' stability classification scheme which was used to define the turbulent state of the atmosphere or to describe the dispersion capabilities of the atmosphere which was each covers a broad range of stability conditions, and that they were very site specific, and the vertical dispersion calculation formula on the case of the unstable atmospheric condition. This paper was carried out to revise the Gaussian dispension model for the purposed of increase the modeling performance and propose the revised model, which was composed of the turbulent characteristics in the unstable atmospheric conditions. The proposed models in this study were composed of the profile method, Monin-Obukhove length, the probability density function model and the lateral dispersion function which was composed of the turbulent parameters, $u_*$(friction velocity), $w_*$(convective velocity scale), $T_L$(lagrangian time scale) for the model specific. There were very good performance results compare with the tracer experiment result on the case of the short distance (<1415m) from the source, but increase the simulation error(%) to stand off the source in the all models. In conclusion, the revised Gaussian dispersion model using the turbulent characteristics may be a good contribution for the development of the air pollution simulation model.

  • PDF

Alleviation of PM2.5-associated Risk of Daily Influenza Hospitalization by COVID-19 Lockdown Measures: A Time-series Study in Northeastern Thailand

  • Benjawan Roudreo;Sitthichok Puangthongthub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.2
    • /
    • pp.108-119
    • /
    • 2024
  • Objectives: Abrupt changes in air pollution levels associated with the coronavirus disease 2019 (COVID-19) outbreak present a unique opportunity to evaluate the effects of air pollution on influenza risk, at a time when emission sources were less active and personal hygiene practices were more rigorous. Methods: This time-series study examined the relationship between influenza cases (n=22 874) and air pollutant concentrations from 2018 to 2021, comparing the timeframes before and during the COVID-19 pandemic in and around Thailand's Khon Kaen province. Poisson generalized additive modeling was employed to estimate the relative risk of hospitalization for influenza associated with air pollutant levels. Results: Before the COVID-19 outbreak, both the average daily number of influenza hospitalizations and particulate matter with an aerodynamic diameter of 2.5 ㎛ or less (PM2.5) concentration exceeded those later observed during the pandemic (p<0.001). In single-pollutant models, a 10 ㎍/m3 increase in PM2.5 before COVID-19 was significantly associated with increased influenza risk upon exposure to cumulative-day lags, specifically lags 0-5 and 0-6 (p<0.01). After adjustment for co-pollutants, PM2.5 demonstrated the strongest effects at lags 0 and 4, with elevated risk found across all cumulative-day lags (0-1, 0-2, 0-3, 0-4, 0-5, and 0-6) and significantly greater risk in the winter and summer at lag 0-5 (p<0.01). However, the PM2.5 level was not significantly associated with influenza risk during the COVID-19 outbreak. Conclusions: Lockdown measures implemented during the COVID-19 pandemic could mitigate the risk of PM2.5-induced influenza. Effective regulatory actions in the context of COVID-19 may decrease PM2.5 emissions and improve hygiene practices, thereby reducing influenza hospitalizations.

Numerical Simulation of Effects of Atmospheric Flow Fields Using SurFace Observational Data on Dispersion Fields of Air Pollutants in Gwangyang Bay (광양만권역에서의 자료동화된 대기 유동장이 대기 오염 물질의 확산장에 미치는 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Kim Hyun Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2005
  • A critical component of air pollution modeling is the representation of atmospheric flow fields within a model domain, since an accurate air quality simulation requires an accurate portrayal of the three-dimensional wind fields. The present study investigated data assimilation using surface observational data in the complex coastal regions to simulate a realistic atmospheric flow fields. Surface observational data were categorized into three groups (Near coastal region, Far coastal region 1, Far costal region 2) by the locations where the sites are. Experiments were designed according to the location of observational stations and MM5/CALPUFF was used. The results of numerical simulation of atmospheric flow fields are used as input data for CALPUFF which predicts dispersion fields of air pollutants. The result of this study indicated that data assimilation using data in the far coastal region 2 provided an attractive method for generating realistic meteorological fields and dispersion fields of air pollutants in Gwangyang area because data in the near coastal region are variable and narrow representation.

On modeling air quality over Chungcheong area (충청권 대기환경평가 모델링)

  • Park, Il-Su;Lee, Seok-Jo;Kim, Jung-Su;Kim, Sang-Gyun;Jung, Da-Wi;Kim, Chul-Hee;Lee, Yong-Hee;Yoo, Chul;Jin, Hyung-Ah;Kim, Rok-Ho
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.357-357
    • /
    • 2003
  • 천안 및 대전을 포함하는 충청권은 향후 10년 내에 우리나라 정치, 행정의 중심부로 부각될 전망이다. 현재 충청권의 대기환경은 수도권에 비해 양호한 수준이나, 정치 및 행정의 요충지로 부각될때 악화 될수 있는 가능성을 내포하고 있다. 쾌적한 대기환경을 유지하는 행정 중심부로서의 역할을 위해서는 대기환경의 사전 평가를 통해 환경 친화적인 도시 건설이 설계되어야 하겠다. (중략)

  • PDF

A Study on the Atmospheric Dispersion of Odor Emitted from Banwol/Sihwa Industrial Complex in Ansan Area (반월, 시화공단 악취물질의 안산지역 확산 연구)

  • Song, Dong-Woong;Song, Chang-Keun;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.323-340
    • /
    • 2003
  • There have been persistent civil appeals in Ansan area against the odor and aerosols emitted from nearby Banwol/Sihwa industrial complex. A fundamental solution for the good air quality has not been addressed yet in spite of the continuous counterplan to reduce odor emission. A systematic and scientific study is needed to examine the reason for the odor episode and to predict the impact coverage of odor pollution. An approach by computational simulation is considered to be adequate to investigate the transportation and the dispersion processes of air pollutants blown by sea breeze toward the coastal city, Ansan. This study has employed various dispersion models to simulate the transportation and the dispersion processes of odor pollutants by a local circulation between land/sea breeze using the data set of emission rates of odorous species from the Banwol/Sihwa industrial complex.

Review on the Recent PM2.5 Studies in China (최근 중국의 초미세먼지 오염 연구 동향)

  • Kim, Yumi;Kim, Jin Young;Lee, Seung-Bok;Moon, Kil-Choo;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.411-429
    • /
    • 2015
  • The Korea Ministry of Environment has established an air quality standard for $PM_{2.5}$ in 2012 and it is effective from January 2015. In this study, we review various aspects of $PM_{2.5}$ in China, including its measurement, modeling, source apportionment, and health effect, and suggest future research directions for $PM_{2.5}$ studies in Korea. Measurements studies for $PM_{2.5}$ have examined organic marker compounds and $^{14}C$ as well as inorganic aerosols for distinguishing sources. Modeling results supported that the control of $PM_{2.5}$ pollution in big city needs effective cooperation between city and its surrounding regions. The major $PM_{2.5}$ sources in China have been identified to be secondary sulfur, motor vehicle emissions, coal combustion, dust, biomass burning, and industrial sources, however, they have seasonal dependency. Especially, the severe haze pollution event during January 2013 over eastern and northern China was driven to a large extent by secondary aerosol formation. Short-term exposure to $PM_{2.5}$ is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases, as well as total non-accidental mortality. Considered previous $PM_{2.5}$ studies in China, analysis of specific organic species using online measurement, chamber experiment for secondary aerosol formation mechanism, and development of parameterizing this process in the model are needed to elucidate factors governing the abundance and composition of $PM_{2.5}$ in Korea.

Effects Study on the Accuracy of Photochemical Modeling to MM5 Four Dimensional Data Assimilation Using Satellite Data (위성자료를 이용한 MM5 4차원자료동화가 광화학모델의 정확도에 미치는 영향 고찰)

  • Lee, Chong-Bum;Kim, Jea-Chul;Cheon, Tae-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.264-274
    • /
    • 2009
  • Concentration of Air Quality Models (CMAQ) has a deep connection with emissions and wind fields. In particular the wind field is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. The purpose of this study is to examine the impact of interpolation on Air quality model. This study was designed to evaluate enhancement of MM5 and CMAQ predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station and the MODerate resolution Imaging Spectroradiometer (MODIS). The alternative meteorological fields predicted with and without MODIS data were used to simulate spatial and temporal variations of ozone in combined with CMAQ on June 2006. The result of this study indicated that data assimilation using MODIS data provided an attractive method for generating realistic meteorological fields and dispersion fields of ozone in the Korea peninsular, because MODIS data in 10 km domain are grid horizontally and vertically. In order to ensure the success of Air quality model, it is necessary to FDDA using MODIS data.

Perspectives on Noise Issues Arising from the Introduction of Urban Air Mobility (UAM) -Characteristics and Potential Health Effects of UAM Noise: Research Directions and Policy Considerations- (도심환경교통(Urban Air Mobility, UAM) 도입에 따른 소음 문제에 대한 시론 -UAM 소음의 특성과 잠재적 건강영향: 연구 방향 및 관리를 위한 정책적 고려사항-)

  • Seunghon Ham
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.81-82
    • /
    • 2024
  • Urban air mobility (UAM) is emerging as an innovative transportation solution for cities. However, the potential noise impact on urban life must be carefully examined. Continuous exposure to UAM noise, with its unique frequency characteristics and temporal variability, may adversely affect citizens' health by causing sleep disorders, cardiovascular disease, and cognitive impairmenet, particularly in children. NASA has formed a UAM Noise Working Group to study this issue comprehensively. In Korea, the Seoul Metropolitan Government's UAM demonstration project is expected to accelerate related research and development. Scientific analysis, including noise measurement, prediction modeling, and health impact assessment, must be prioritized. Measures to minimize noise should be established based on this evidence, such as optimizing flight modes, developing noise reduction technologies, and establishing new noise management standards. Transparency and social consensus are crucial throughout this process. Expert review and open communication with civil society are necessary to address related concerns. Sharing demonstration project results and providing opportunities to experience UAM noise through digital twin simulations can help address public concerns and build social consensus. Proactively and scientifically tackling noise issues is essential for the sustainable development and successful integration of UAM into daily life.

Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling (생지화학모델링을 이용한 동중국해 해양-대기 CO2교환량의 변화 연구)

  • Park, Young-Gyu;Choi, Sang-Hwa;Yeh, Sang-Wook;Lee, Jung-Suk;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.325-334
    • /
    • 2008
  • A biogeochemical model was used to estimate air-sea $CO_2$ exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately $1.5{\sim}2\;mole\;m^{-2}yr^{-1}$ of $CO_2$ from the atmosphere. The model also showed that biological factors modify the air-sea $CO_2$ flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed $0.4{\sim}0.8\;mole\;m^{-2}yr^{-1}$ more $CO_2$. If warming of the sea surface is considered, in addition to the increase in atmospheric $CO_2$ concentration, by 2045 the East China Sea would absorb $0.2{\sim}0.4\;mole\;m^{-2}yr^{-1}$ less $CO_2$ compared to the non-warming case.