• 제목/요약/키워드: Air Pollution Emissions

검색결과 463건 처리시간 0.023초

수도권 지역별 목표대기질 달성을 위한 오염배출 삭감율 산정 연구 (An Estimation of Emission Reduction Rates to Achieve the Target Air Quality in Seoul Metropolitan Area)

  • 김정수;김지영;홍지형;정동일;반수진;박상남
    • 환경영향평가
    • /
    • 제16권1호
    • /
    • pp.1-13
    • /
    • 2007
  • This study was carried out to estimate the emission reduction rates for the regional allowable emissions by special measures to achieve the target air quality in Seoul Metropolitan Area (SMA). A modeling system was designed to validate the details in enforcement regulations set up by local governments based on the current status and plans for air quality improvement. Modeling system was composed of meteorological model (MM5), emission model (SMOKE), and air quality model (CMAQ). Predicted results by this system show quiet well not only daily air pollutants concentration but also the tendencies of wind direction, wind speed and temperature. To achieve the target air quality in Seoul Metropolitan Area (SMA), emission allowances are estimated by seasons and regions. Referring to the base year 2002, it was estimated that emission reduction rates to achieve the intermediate goal in 2007 were 14.2% and 16.6% for NOx and $PM_{10}$, respectively. It was also estimated that 52% of NOx and 48% of $PM_{10}$ reductions from the base year 2002 would be required to accomplish the air quality improvement goal of 22 ppb for $NO_2$, and $40mg/m^3$ for $PM_{10}$ in year 2014. To improve $NO_2$ and $PM_{10}$ concentration through emissions reduction policies, it was found that emissions reduction for the on-road mobile sources would be the most effective in SMA.

도로 재비산먼지 이동측정차량을 이용한 도로 재비산먼지 측정과 도로먼지 미량원소 분석 (Road Dust Emissions from Paved Roads Measured by Road Dust Monitoring Vehicle and Analysis of Trace Elements)

  • 이명훈;신정섭;신원근;이상구;김종;이창
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.47-54
    • /
    • 2012
  • Paved road dust emissions were investigated 14 times on 12 main roads in Seo-Cho Gu, Seoul, Korea by vehicle-based mobile sampling system(Road Dust Monitoring System) during September to December 2011. Also, fourteen heavy metals present in the dust samples were analyzed by ICP. ICP analysis showed that one of major source of the road dust would be urban construction. A large amount of silt was found, which might be originated mainly from building construction and open beds of trees. Trace element and pollution indices of heavy metals(Cd, Cu, Ni, Pb, Zn) on the roads adjacent to the commercial area had higher concentrations than those on the roads adjacent to the construction and residential areas because of traffic density and heavy traffic.

직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

Modelling CO2 and NOx on signalized roundabout using modified adaptive neural fuzzy inference system model

  • Sulaiman, Ghassan;Younes, Mohammad K.;Al-Dulaimi, Ghassan A.
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.107-113
    • /
    • 2018
  • Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to find the most influential factors affecting $CO_2$ and $NO_x$ emissions using Adaptive Neural Fuzzy Inference System (ANFIS) as well as a systematic approach. The modified ANFIS (MANFIS) was developed to enhance modelling and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of $CO_2$ from trucks represent the best input combination to model. While for $NO_x$ modelling, the best pair combination is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, three membership functions and nine rules. For $CO_2$ modelling the triangular membership function is the best, while for $NO_x$ the membership function is two-sided Gaussian.

광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성 (Pollution characteristics of PM2.5 observed during January 2018 in Gwangju)

  • 유근혜;박승식;정선아;조미라;장유운;임용재;김영성
    • 한국입자에어로졸학회지
    • /
    • 제15권3호
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

Assessment of Air Quality Impact Associated with Improving Atmospheric Emission Inventories of Mobile and Biogenic Sources

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.11-23
    • /
    • 2000
  • Photochemical air quality models are essential tools in predicting future air quality and assessing air pollution control strategies. To evaluate air quality using a photochemical air quality model, emission inventories are important inputs to these models. Since most emission inventories are provided at a county-level, these emission inventories need to be geographically allocated to the computational grid cells of the model prior to running the model. The conventional method for the spatial allocation of these emissions uses "spatial surrogate indicators", such as population for mobile source emissions and county area for biogenic source emissions. In order to examine the applicability of such approximations, more detailed spatial surrogate indicators were developed using Geographic Information System(GIS) tools to improve the spatial allocation of mobile and boigenic source emissions, The proposed spatial surrogate indicators appear to be more appropriate than conventional spatial surrogate indicators in allocating mobile and biogenic source emissions. However, they did not provide a substantial improvement in predicting ground-level ozone(O3) concentrations. As for the carbon monoxide(CO) concentration predictions, certain differences between the conventional and new spatial allocation methods were found, yet a detailed model performance evaluation was prevented due to a lack of sufficient observed data. The use of the developed spatial surrogate indicators led to higher O3 and CO concentration estimates in the biogenic source emission allocation than in the mobile source emission allocation.llocation.

  • PDF

수도권 지역에서 대기질 측정망 자료를 이용한 광화학모델의 이동오염원 배출량 검증 (Verification of Mobile Emission for CMAQ using an Observation-based Approach in Seoul Metropolitan Area)

  • 이용미;이현주;유철;송정희;김지영;홍지형
    • 한국대기환경학회지
    • /
    • 제25권5호
    • /
    • pp.369-381
    • /
    • 2009
  • The objective of this study was to simulate surface air pollutants and to examine reliability of mobile emission for CMAQ system using an observation-based approach in the Seoul Metropolitan Area. Accurate assessment of emissions from mobile source is one of the most debatable parts in the entire emissions inventory process. For this study, we evaluated the official emission inventories of Volatile Organic Compounds (VOCs) and nitrogen oxides ($NO_x$) using an observation-based approach. In this paper, we achieved VOCs/CO and $NO_x$/CO ratios derived from ambient measurements taken from June to August of 2005 in early morning (07:00~08:00). And we compared them with those derived from the emission inventory. Based on these ratios and on the assumption that official inventory of CO emissions is reasonably accurate, mobile emissions of $NO_x$ seem to be slightly overestimated and VOCs emissions significantly underestimated. The results of simulations using modified emission of mobile source were in closer agreement with the observation results except NO. Predicted NO values based on revised $NO_x$ emissions were considerably lower than the observed values. Using modified emission inventories brings the modeled values into closer agreement with observed ozone levels in Seoul. Especially in case of CO, $NO_x$ and VOCs emission, the modified values were suitable for simulating ozone levels in Seoul and Gyeonggi. However, ozone values predicted using the modified emissions were higher than the observed and predicted values based on original emissions. According to the 95 percentile ozone concentrations, emission revised by CO, $NO_x$ and VOCs from mobile source was the best for predicting high concentration.

중국의 오염저감 정책이 이산화황 배출에 미치는 영향 분석 (An Analysis of the Impact of China's Pollution Reduction Policy on Sulfur Dioxide Emissions)

  • 김가영;이재승
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.367-377
    • /
    • 2015
  • This study analyzed the effectiveness of China's policy to reduce of sulfur dioxide. China's $12^{th}$ Five-year plan on national economic and social development emphasized environmental protection and low-carbon economic development. Sulfur dioxide was one of the major gases to affect air pollution and climate change and its control became a key policy agenda in the environment and energy sector. As the absolute amount of sulfur dioxide emissions in China came from the industrial sector, the control of the coal-based energy was especially urgent. This study analyzed the factors that influenced the sulfur dioxide emissions and the policy effects to reduce sulfur dioxide in China from 2003 to 2012 based on regional data. The air pollution treatment investments showed the biggest impact together with energy conservation policy in reducing sulfur dioxide emissions. However, pollutant emissions charge did not show a relevant policy effectiveness in all regions as the amount of charge would be smaller than economic benefit from non-compliance. Rationalizing pollutant emissions charge is, therefore, a key policy task for further reduction of sulfur dioxide emissions.

Applications of Drones for Environmental Monitoring of Pollutant-Emitting Facilities

  • Son, Seung Woo;Yu, Jae Jin;Kim, Dong Woo;Park, Hyun Su;Yoon, Jeong Ho
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제2권4호
    • /
    • pp.298-304
    • /
    • 2021
  • This study aimed to determine the applicability of drones and air quality sensors in environmental monitoring of air pollutant emissions by developing and testing two new methods. The first method used orthoimagery for precise monitoring of pollutant-emitting facilities. The second method used atmospheric sensors for monitoring air pollutants in emissions. Results showed that ground sample distance could be established within 5 cm during the creation of orthoimagery for monitoring emissions, which allowed for detailed examination of facilities with naked eyes. For air quality monitoring, drones were flown on a fixed course and measured the air quality in point units, thus enabling mapping of air quality through spatial analysis. Sensors that could measure various substances were used during this process. Data on particulate matter were compared with data from the National Air Pollution Measurement Network to determine its future potential to leverage. However, technical development and applications for environmental monitoring of pollution-emitting facilities are still in their early stages. They could be limited by meteorological conditions and sensitivity of the sensor technology. This research is expected to provide guidelines for environmental monitoring of pollutant-emitting facilities using drones.

국내 이동오염원에서 발생되는 벤젠 배출량 산정 (Estimation of Benzene Emissions from Mobile Sources in Korea)

  • 이주형;차준석;홍지형;정동일;김지영
    • 한국대기환경학회지
    • /
    • 제24권1호
    • /
    • pp.72-82
    • /
    • 2008
  • Benzene is a very harmful and toxic compound known as human carcinogen by all routes of exposure. Owing to the risky feature of benzene, several countries such as Japan, UK and EU have established the ambient air quality standard and protect from that risk of it. Korea also has designated it as one of the criteria air pollutants and established the concentration limit ($5\;{\mu}g/m^3$) in the air and is going to apply the standard from 2010. Benzene is emitted from various sources such as combustion plants, production processes, waste treatment facilities and also automobiles. Mobile source is known as one of the major emission sources of benzene. In this study, we estimated the domestic emissions of benzene from mobile source and compared the results with those of advanced countries. Mobile source was divided into 2 categories, Le., on-road source and non-road source. The total emissions of benzene from mobile source were estimated as 3,106 tons/yr and 1,612 tons/yr was emitted from on-road source and 1,494 tons/yr was from non-road source. Emission ratio of benzene from on-road source showed that 80.0% was from passenger cars, 10.1% was from taxis, 7.2% was from light-duty vehicles, 2.5% was from heavy-duty vehicles and 0.2% was from buses. In the case of non-road source, the distribution showed that 66.3% was from construction machineries, 14.5% was from locomotives, 11.7% was from ships, 7.1% was from agriculture equipments and 0.5% was from aircrafts. The cold-start emissions were estimated as 942 tons/yr and this value was almost 1.5 times greater than that for hot engine emissions (608 tons/yr). In addition, the fuel-based distribution was 65.9%, 31.1% and 2.8% from gasoline, LPG and diesel vehicles, respectively. The emission ratio from mobile source occupied 65% and 30% of total benzene emissions in USA and UK, respectively. In case of Korea, the emission ratio of benzene from mobile source occupied 29% (15% from on-road source, 14% from non-road source) which showed similar value with UK.