• 제목/요약/키워드: Air Pollution Emission

검색결과 852건 처리시간 0.019초

공해(公害)에 관(關)한 조사연구(調査硏究) 제일편(第一編) : 서울, 부산(釜山), 대구(大邱) 지역(地域)의 대기오염(大氣汚染) 및 소음(騷音)에 관(關)한 비교조사(比較調査) 연구(硏究) (A Study on Public Nuisance in Seoul, Pusan and Daegu Cities Part I. Survey on Air Pollution and Noise Level)

  • 차철환;신영수;이영일;조광수;주종유;김교성;최덕일
    • Journal of Preventive Medicine and Public Health
    • /
    • 제4권1호
    • /
    • pp.41-64
    • /
    • 1971
  • During the period from July 1st to the end of November 1970, a survey on air pollution and noise level was made in Seoul, Pusan and Taegu, the three largest cities in Korea. Each city was divided into 4-6 areas; the industrial area, the semi-industrial area, the commercial area, the residential area, the park area and the downtown area. Thirty eight sites were selected from each area. A. Method of Measurement : Dustfall was measured by the Deposit Gauge Method, sulfur oxides by $PbO_2$ cylinder method, suspended particles by the Digital Dust Indicator, Sulfur dioxide ($SO_2$) and Carbon Monoxide (CO) by the MSA & Kitakawa Detector and the noise levels by Rion Sound Survey meter. B. Results: 1. The mean value of dustfall in 3 cities was $30.42ton/km^2/month$, ranging from 8.69 to 95.44. 2. The mean values of dustfall by city were $33.17ton/km^2/month$ in Seoul, 32.11 in Pusan and 25.97 in Taegu. 3. The mean values of dustfall showed a trend of decreasing order of semi-industrial area, downtown area, industrial area, commercial area, residential area, and park area. 4. The mean value of dustfall in Seoul by area were $52.32ton/km^2/month$ in downtown, 50.54 in semi-industrial area, 40.37 in industrial area, 24,19 in commercial area, 16.25 in park area and 15.39 in residential area in order of concentration. 5. The mean values of dustfall in Pusan by area were $48.27ton/km^2/month$ in semi-industrial area, 36.68 in industrial area 25.31 in commercial area, and 18.19 in residential area. 6. The mean values of dustfall in Taegu by area were $36.46ton/km^2/month$ in downtown area, 33.52 in industrial area, 20.37 in commercial area and 13.55 in residential area. 7. The mean values of sulfur oxides in 3 cities were $1.52mg\;SO_3/day/100cm^2\;PbO_2$, ranging from 0.32 to 4.72. 8. The mean values of sulfur oxides by city were $1.89mg\;SO_3/day/100cm^2\;PbO_2$ in Pusan, 1.64 in Seoul and 1.21 in Taegu. 9. The mean values of sulfur oxides by area in 3 cities were $2.16mg\;SO_3/day/100cm^2\;PbO_2$ in industrial area, 1.69 in semi-industrial area, 1.50 in commercial area, 1.48 in downtown area, 1.32 in residential area and 0.94 in the park area, respectively. 10. The monthly mean values of sulfur oxides contents showed a steady increase from July reaching a peak in November. 11. The mean values of suspended particles was $2.89mg/m^3$, ranging from 1.15 to 5.27. 12. The mean values of suspended particles by city were $3.14mg/m^3$ in Seoul, 2.79 in Taegu and 2.25 in Pusan. 13. The mean values of noise level in 3 cities was 71.3 phon, ranging from 49 to 99 phon. 14. The mean values of noise level by city were 73 phon in Seoul, 72 in Pusan, and 69 in Taegu in that order. 15. The mean values of noise level by area in 3 cities showed a decrease in the order of the downtown area, commercial area, industrial area and semi-industrial area, park area and residential area. 16. The comparison of the noise levels by area in 3 cities indicated that the highest level was detected in the downtown area in Seoul and Taegu and in the industrial area in Pusan. 17. The daily average concentration of sulfur dioxides ($SO_2$) in 3 cities was 0.081 ppm, ranging from 0.004 to 0.196. 18. The daily average concentrations of sulfur dioxides by city were 0.092 ppm in Seoul, 0.089 in Pusan and 0.062 in Taegu in that order. 19. The weekly average concentration of carbon monoxides(CO) was 27.59 ppm. 20. The daily average concentrations of carbon monoxides by city were 33.37 ppm. in Seoul, 25.76 in Pusan and 23.65 in Taegu in that order. 21. The concentration of $SO_2$ and CO reaches a peak from 6 p. m. to 8 p. m. 22. About 3 times probably the daily average concentration of CO could be detected in the downtown area probably due to heavy traffic emission in comparison with that in the industial area. 23. As for daily variation of the concentration of $SO_2$ and CO it was found that the concentration maintains relatively higher value during weekdays in the industrial area and on the first part of the week in the downtown area.

  • PDF

한반도 미세먼지 발생과 연관된 대기패턴 그리고 미래 전망 (Atmospheric Circulation Patterns Associated with Particulate Matter over South Korea and Their Future Projection)

  • 이현주;정여민;김선태;이우섭
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.423-433
    • /
    • 2018
  • 본 연구에서는 고농도 미세먼지의 발생과 연관된 대기패턴을 조사하고, 이를 바탕으로 한반도의 고농도 미세먼지의 발생을 예측할 수 있는 지수를 개발하였다. 또한 개발된 지수를 이용하여 미래의 한반도 고농도 미세먼지 발생과 연관된 대기 패턴의 변화를 살펴보았다. 서울지역 미세먼지 농도의 변동성을 조사하기 위해, 황사 발생 사례일을 제외한 미세먼지 고농도 사례일은 대기환경기준에 따라 24시간 평균 $PM_{10}$ 농도가 $100{\mu}g/m^3$ 이상일 경우로 정의하였다. 미세먼지 연평균 농도는 2001년부터 꾸준히 감소하는 경향을 보이며, 2012년 이후에 감소 추세가 주춤하였으며, $PM_{10}$ 고농도 사례일수도 2003년부터 2016년까지 대체로 감소하였다. 그러나 4일 이상 지속되었던 고농도 사례만을 살펴보면 2001년과 2003년을 제외하고 뚜렷한 감소 경향을 찾아보기 어렵고 전반적인 대기질 향상에도 불구하고 지속적으로 발생하는 것을 알 수 있다. 4일이상 지속되는 고농도 사례는 최근 들어 뚜렷한 경향을 보이지 않고, 기상조건 등의 다른 발생원이 있음을 알 수 있다. 그러므로 고농도 사례에 대한 대기 순환장의 특징을 살펴보기 위해 한반도의 고농도 사례일에 대한 대기패턴의 합성장을 분석하였다. 고농도 사례가 발생하였을 경우, 한반도 상공에 고기압에 위치하면서, 극의 찬 공기의 유입을 차단하며, 상층 동서 방향 바람은 한반도 북쪽으로 흐르게 된다. 따라서 한반도 지역은 차고 건조한 북서풍이 약화되고, 풍속이 감소된다. 이러한 한반도 미세먼지 고농도 사례와 연관된 대기패턴을 바탕으로 겨울철 한반도 $PM_{10}$ 농도를 전망하기 위한 미세먼지 고농도 지수를 정의하여 사용하였다. 먼저 500 hPa 지위고도, 500 hPa 동서 방향 바람 성분, 850 hPa 남북 방향 바람 성분과 $PM_{10}$과의 상관성이 높은 지역에서 각 변수를 영역 평균하고 표준화 과정을 거친 후 각 변수에 대한 지수를 계산하고, 각 지수의 합으로 한반도 미세먼지 고농도 지수 (KPI)를 정의하였다. 한반도 미세먼지 고농도 지수를 CMIP5에 참여하는 10개의 기후모형에 적용하여 미래 한반도의 고농도 미세먼지를 발생시킬 수 있는 대기패턴의 변동성을 살펴보았다. 겨울철 한반도에서 대기의 정체를 유발하여 심한 대기오염을 발생시킬 수 있는 기상 조건의 빈도가 기후변화에 따라 크게 증가하는 것으로 나타났다. 이러한 증가는 한반도 주변의 평균 대기 상태의 변화와 일치한다 (Cai et al, 2017). 이 연구는 $PM_{10}$ 관측자료 기간이 2001년부터 2016년까지의 총 16년 동안의 자료 만을 이용하여 한반도 고농도 미세먼지 발생과 관련된 대기패턴을 분석하였기에 대기오염과 연관된 기상조건을 완벽하게 식별하지는 못하였을 것이다. 향후 연구를 통해서 $PM_{10}$과 더불어 $PM_{2.5}$의 자료를 활용하여 상세한 분석이 필요할 것으로 보인다. 그럼에도 불구하고, 본 연구의 결과는 지구 온실가스 배출로 인한 대기 순환의 변화가 한반도 고농도 미세먼지 발생 사례를 증가시키는 중요한 역할을 할 수 있음을 시사한다. 지구 온난화가 심해진다면, 작은 대기 오염 배출이라도 축적이 되어 고농도 미세먼지 현상이 발생 할 수 있다. 따라서 대기 오염 배출 저감 노력뿐만 아니라, 온실가스 배출량을 줄이기 위한 노력이 동시에 필요할 것으로 사료된다.