• 제목/요약/키워드: Air Nozzle System

검색결과 307건 처리시간 0.024초

열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구 (A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System)

  • 정일래;김용술;심용식
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

천연가스 다노즐 열원설비의 연료 유동 안정화 (Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas)

  • 박의철;차동진
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF

초음파 직물수세기의 구성 및 구동 특성 (Assemblage and Driving Characteristics of a Ultrasonic Fabric Washing Machine)

  • 이춘길;이광수
    • 한국염색가공학회지
    • /
    • 제12권3호
    • /
    • pp.207-217
    • /
    • 2000
  • A new, high-efficiency ultrasonic fabric washing machine was developed to be an energy-efficient washing machine and to enhance fabric washing quality in washing processes of the dyeing and finishing process in the textile industry. This system is composed of ultrasonic wave generator, air blowing nozzle, torque motor for fabric tension control, and enclosed washing bath, multi-tube type exchanger, noiseless heater, air cylinder, expander roller, mangle upper and lower rollers, bend bar, dancer, shower spray nozzle, and solenoid valve, and so on. These elements are synergised for fabric washing. One of the very important principles is the low tension fabric running system. For an efficient washing effect, a counter flow system is also adopted. The new system also adopts the dancer and torque motor to control fabric tension and prevent fabric creasing. Shower spray nozzle, counter flow and overflow apparatus, and air-blowing apparatus are adopted to enhance the fabric washing effect. In this study, peach yoryu, exter, and moss crepe fabrics were washed by the general and ultrasonic washing systems under different conditions respectively. The washing efficiency was affected by the fabric running speed and characteristics of fabrics. Size content after washing increased with increasing the fabric running speed. The values in the general washing system were higher than those of the ultrasonic washing system. The changes of conductivity in the ultrasonic and the cooling bath were affected by the running time under the ultrasonic generating. The values of conductivity decreased as the experimental time passed.

  • PDF

압력식 노즐에서 송풍공기가 미립화에 미치는 영향에 관한 연구 (A Study on the Effect of Atomization of Pressure Nozzle with Blower - Air)

  • 고경한;임상호
    • 디지털융복합연구
    • /
    • 제10권5호
    • /
    • pp.283-288
    • /
    • 2012
  • 본 연구는 이유체 분무장치 미립화 장치 분무특성을 연구하기 위해 수행되었다. 실험 조건은 상온에서 분사압력을 5 bar에서 10 bar 까지 1 bar 간격과 송풍기로부터 공기유량은 0.5, 1.0, 2.0 mmH2O(X10-2)로 증가하였으며, 사용된 액체는 경유이다. 분무특성을 연구하기위해 SMD를 측정하였다. 이 실험으로 부터 다음과 같은 결과를 얻었다. 1. 분무 압력이 증가할수록 SMD는 점점 감소한다. 2. 압력노즐로부터 측정 거리가 증가할수록 SMD도 증가한다. 3. 송풍공기가 더해지면서 분무되는 경우의 SMD는 상대적으로 감소한 것으로 볼 수 있다. 이 연구의 결과로 알 수 있듯이, 송풍공기가 더해지는 분사 장치는 유용한 SMD의 변화를 볼 수 있다. 이는 이유체 분무장치 미립화 장치 분무특성 설계와 성능평가를 위한 중요한 지표로 사용될 수 있을 것으로 판단된다.

이유체 선회분사 노즐의 액적크기에 관한 실험적 연구 (An Experimental Study on the Drop Size of a Twin-Fluid Swirl Jet Nozzle)

  • 오제하;김원태;강신재;노병준
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.21-27
    • /
    • 1996
  • This experimental study was to investigate spray angles and drop sizes in an external mixed twin-fluid swirl jet nozzle. Twin-fluid swirl jet nozzle with swirlers designed four swirl angles such as $0^{\circ},\;22.5^{\circ},\;45^{\circ},\;64.2^{\circ}$ was employed. A PDA system was utilized for the measurement of drop size and mean velocity. Water and air were used as the working fluids in this experiment. The mass flow rate of water was fixed as 0.03 kg/min, and air flow rates were controlled to have the air/liquid mass ratio from 1.0 to 6.0. As a result, swirl angle controlled to spray angles and drop sizes. It was found that swirl angle was increased with spray angle and with decreased SMD. However, the effect of swirl angle was reduced at large air/liquid mass ratio(Mr=6.0).

  • PDF

보일러 Windbox내 공기공급 계통의 유량분포 해석 (Analysis of Air Distribution in the Windbox System of the Utility Boiler)

  • 박호영;김성철
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.581-589
    • /
    • 2008
  • The pulverized coal combustion behavior in the utility boiler is very complex since so many physical and chemical processes happen in it, simultaneously. The mixing of pulverized coal with combustion air plays an important role in achieving the efficient combustion and stable boiler operation. The distribution of combustion air supplied to the furnace through the windbox damper system has not been clearly known since the individual measurements of air flow for each air nozzle were not possible, yet. The present study describes the CFD modelling of windbox damper system and aims to obtain the air flow rates and pressure loss coefficients across the present five damper systems, respectively. The one dimensional flow network model has been also established to get air flow distributions across the windbox damper, and applied to the actual plant operation condition. Compared with the designed air flow distribution, the modelled one gives a reasonable agreement. For the actual plant operation, the predicted air flow distribution at each air nozzle is differed with the designed data and strongly affected by the individual opening angle.

증기-증기 이젝터를 적용한 OTEC 시스템 성능의 수치적 분석 (The numerical analysis of performance of OTEC system with vapor-vapor ejector)

  • 윤정인;손창효;예병효;하수정;최인수;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, the Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed newly. At this OTEC system, a vapor-vapor ejector is installed at inlet of condenser. The vapor-vapor ejector plays a very important role in increasing of the production work of low-stage turbine throughout the decrement of outlet pressure of ejector. The performance analysis is conducted for optimizing the system with HYSYS program. The procedure of performance analysis consists of outlet pressure of high turbine, the mass ratio of working fluid at separator, total working fluid rate, and nozzle diameters of vapor-vapor ejector. The main results is summarized as follows. The nozzle diameter is most important thing in this study. When each nozzle diameter of vapor-vapor ejector is 10 mm, the efficiency of OTEC system with vapor-vapor ejector shows the highest value. So it is necessary to set the optimized nozzle diameters of vapor-vapor ejector for achieving the high efficiency OTEC power system.

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

자동차 전면유리의 제상시스템 설계를 위한 3차원 비정상 수치해석 (3D Unsteady Numerical Analysis to Design Defrosting System of Automotive Windshield Glass)

  • 강신형;이진호;변주석
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.1-8
    • /
    • 2007
  • The present research is based upon the numerical analysis of a car windshield in order to represent the optimum design guide to improve the overall defrosting performance of the system. First, the control factors that highly affect the defrosting performance of a car windshield are chosen and afterwards, the optimum variables of each control factor are extracted out to analyze its performance. The main control factors for this research are respectively, the air injection angle of a defroster nozzle, the height of a nozzle outlet, and the ratio of the width to the height of a nozzle outlet. For such case when the air inlet angle is relatively small, the flow near the vicinity of the inner face of a windshield tends to expand. As a consequence, the heat transfer rate through the windshield decreases. Also, the height of a nozzle outlet is recommended to maintain its size to minimum. However, when the ratio mentioned before is designed less than unity, the defrosting performance decreases.