• Title/Summary/Keyword: Air Jetting

Search Result 17, Processing Time 0.024 seconds

Self-sensing measurement of piezo inkjet and its Applications (피에조 잉크젯의 셀프 센싱 검출 및 응용)

  • Kwon, Kye-Si;Kim, Wou-Sik;Kim, Sang-Il;Shin, Seung-Joo;Kim, Seong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.366-372
    • /
    • 2007
  • Self-sensing measurement of piezo inkjet and its application are discussed. The pressure wave inside the inkjet dispenser was measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially available laser vibrometer. Here, two applications using self-sensing signal were discussed: waveform design for high speed jetting and condition monitoring. For waveform design, two pulse waveform was designed based on self-sensing signal such that the pressure wave after droplet formation can be minimized. For condition monitoring, self-sensing signal was shown to be effective in detecting air bubble trapped in inkjet printhead.

  • PDF

Visualization of Drop Formation and Droplet Velocity Measurement of a Piezoelectric-type Inkjet (피에조 구동형 잉크젯에서 액적 형성의 가시화 및 토출속도 측정)

  • Kwon, D.H.;Choi, Y.S.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 2008
  • The reproducibility of water droplet formation which is indispensible in the investigation of a drop-on-demand piezoelectrically driven inkjet was verified by checking the size of droplet and distance from the nozzle tip of inkjet head to droplet. Based on the reproducibility of droplet formation, we visualized the formation of micro-scale droplets by acquiring consecutive images at the jetting frequency of 500 Hz for which air bubbles were not generated. Two different electric waveforms were used to drive the piezoelectric actuator. The visualization system consists of a high-speed camera that can capture images up to 250,000fps, a long-distance microscope and a halogen lamp as a light source.

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF

Volcanic Processes of Dangsanbong Volcano, Cheju Island (제주도 당산봉 화산의 화산과정)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Dangsanbong volcano, which is located on the coast of the western promontory of Cheju Island, occurs in such a regular pattern on the sequences which represent an excellent example of an eruptive cycle. The volcano comprises a horseshoe-shaped tuff cone and a younger nested cinder cone on the crater floor, which are overlain by a lava cap at the top of the cinder cone, and wide lava plateau in the moat between two cones and in the northern part. The volcanic sequences suggest volcanic processes that start with Surtseyan eruption, progress through Strombolian eruption and end with Hawaiian eruption, and then are followed by rock fall from sea cliff of the tuff cone and by air fall from another crater. It is thought that the eruptive environments of the tuff cone could be mainly emergent because the present cone is located on the coast, and standing body of sea water could play a great role. It is thought that the now emergent part of the tuff cone was costructed subaerially because there is no evidence of marine reworking. The emergent tuff cone is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and external water. The sea water gets into the vent by flooding accross or through the top or breach of northern tephra cone. Dangsanbong tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting explosion in the early stage, late interspersed with continuous upruch activities, and from ultra-Surtseyan jetting explosions producting base surges in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the phreatomagmatic activities ceased to transmit into magmatic activity of Strombolian eruption, which constructed a cinder cone on the crater floor of the tuff cone Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the Dangsanbong volcano, the last magmatic activity was Hawaiian eruption which went into with foundation and effusion of basalt lava.

  • PDF

Studies on Fabrics woven with Silk/Polyester Compound Yarn (고치와 폴리에스텔 복합사 직물의 시직)

  • 김영대;김남정
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.147-151
    • /
    • 1994
  • This study was carried out investigate the characteristics of Habutae and Chiffon woven with silk and polyester(S/P) compound yarn. The S/P compound yarn could be produced by the automatic reeling machine with attachment of air jetting device, polyester yarn guider and tension control apparatus. The surface structure, tensile property and dyeing fastness of S/P compound fabric were examined for the fabric properties. Electron microscopy revealed that most part of S/P compound yarn was well interlaced and some silk part of compound yarn were hidden by polyester on an examination of surface of chiffon fabric. By the one bath and two step dyeing of disperse and acidic dyes, the colour fastness of S/P compound fabrics were 4 grade above. The tenacity and initial modulus of the finished S/P compound fabric were lower than those of grey and degummed fabrics, but reversed in elongation.

  • PDF

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.