• 제목/요약/키워드: Air Injection

검색결과 1,199건 처리시간 0.029초

Tandem 시스템의 NOx 저감 효과에 관한 연구 (A Study on the Effects of NOx Reduction for the Tandem System)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.645-653
    • /
    • 2005
  • The effects of a WI(Water Injection) at the intake Pipe and an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated experimentally The water quantity was controlled by temperature of intake manifold and MAF(Manifold Air Flow). In addition, the urea quantify was controlled by NOx quantify and MAF. Effects of WI system, urea-SCR system and tandem system were investigated for with and without EGR(Exhaust Gas Recirculation). As the results. the SUF(Stoichiometric Urea Flow) and NOx map were obtained. In addition, NOx results can be visualized with engine speed and engine load. It was concluded. therefore, that the NOx reduction effects of the tandem system without the EGR were more than those with the EGR base engine.

분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션 (Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System)

  • 왕우경;장세호;고대권;안수길
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

금형온도와 탈지조건이 사출성형에 의한 알루미나 부품 제조에 미치는 영향 (EFfect of Molding Temperature and Debinding Conditions on Fabrication of Alumina Component by Injection Molding)

  • 임형택;임대순
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.559-566
    • /
    • 1995
  • Alumina powder was coated with stearic acid and then mixed with isotactic polypropylene, atactic polypropylene as binders at 15$0^{\circ}C$ for 2 hours. The mixture was then injection molded at various mold temperatures using injection molding machine to investigate the effect of the molding temperature and debinding parameters on the formation of the defects. The molded specimens were debinded in both air and nitrogen atmospheres. Wicking and solvent methods were also used to enhance debinding efficiency. The specimens were prefired at 120$0^{\circ}C$ and then sintered at 150$0^{\circ}C$ for 3 hours. Various defects were formed at mold temoperature of 3$0^{\circ}C$, 6$0^{\circ}C$ and 10$0^{\circ}C$ and any noticeable defect was not formed at 85$^{\circ}C$. The density of green body increased with mold temperature. Debinding in air atmosphere was more effective than in nitrogen atmosphere. Results also proved that wicking and solvent treatments helped minimize the number of defects.

  • PDF

분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향 (Effects of Ambient Conditions on the Atomization of Direct Injection Injector)

  • 이중순
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대 (Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor)

  • 이상현
    • 한국추진공학회지
    • /
    • 제14권1호
    • /
    • pp.20-28
    • /
    • 2010
  • 스크램제트 연소기 내 파일런 분사기의 연료-공기 혼합특성을 살펴보았으며, 공력가열로부터 파일런을 보호하기 위한 막냉각의 효과를 조사하였다. 수치연구를 위하여 3차원 Navier-Stokes 방정식과 $k-{\omega}$ SST 난류 모델을 이용하였다. 연료인 수소와 공기를 냉각 유체로 고려하였다. 파일런 분사기를 이용하는 경우 침투거리가 증대되고, 혼합률도 주목할 만큼 증대되었으나, 공력가열에 의한 파일런의 전방 표면 과열을 확인하였다. 파일런 전방에 파일런 표면에 평행한 냉각 제트를 분사하는 막냉각을 이용하면 파일런 표면의 과열을 막을 수 있음을 확인하였다.

횡단공기류에서의 고압 가솔린 분사시 연료분무 특성 (Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows)

  • 이석환;최재준;김성수;이상용;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성 (Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics)

  • 장창수;최상민
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Operating characteristics of 3RT heat pumps

  • Moon, Chang-Uk;Choi, Kwang-Hwan;Yoon, Jung-In;Jeon, Min-Ju;Heo, Seong-Kwan;Sung, Yo-Han;Park, Sung-Hyeon;Lee, Jin-Kook;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.140-145
    • /
    • 2017
  • Newly designed vapor-injection heat pumps have been proposed and analyzed in the present study. An economizer-type vapor-injection (V-I) system has been employed as the standard system because of its reliability and simple control method. The V-I system has a re-cooler and re-heater for cooling and heating, respectively. Solar panels have been installed in the V-I heat pump as well as in the re-heater in order to enhance heating capacity and performance. R410A has been employed as a working fluid and performance analysis has been conducted under various conditions. Results are summarized as follows: (1) The V-I system with the re-cooler yielded a marginally higher coefficient of performance (COP) than the conventional V-I refrigeration system. (2) By increasing the re-cooler cooling capacity, enhanced system performance as compared to the conventional V-I system was observed. (3) The re-heater negatively affected the system performance; hence, the V-I heat pump with the re-heater yielded a lower COP than that of the conventional V-I heat pump used for heating. (4) Although the solar panels increased the system performance, this increase could not offset performance degradation by the re-heater.

인젝션형 가변속 스크롤 압축기를 적용한 히트펌프의 난방성능 특성에 관한 연구 (Heating Performance Characteristics of a Heat Pump with a Variable Speed Injection Scroll Compressor)

  • 고석빈;허재혁;조일용;김용찬
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.377-384
    • /
    • 2012
  • Vapor injection technique has been applied to prevent performance degrdation of a heat pump at low ambient temperatures. In this study, the heating performance of a heat pump with a variable speed injection scroll compressor using R-410A was investigated by applying sub-cooler vapor injection(SCVI) and flash tank vapor injection(FTVI). The heating performance of the heat pump was measured by varying compressor frequency and outdoor temperature. The heating capacity of the FTVI system was 8~10% higher than that of the SCVI system at all operating conditions. On the other hand, the heating performance improvement with the increase in the compressor frequency was more prominent in the SCVI system than in the FTVI system.