• Title/Summary/Keyword: Air Hygiene

Search Result 411, Processing Time 0.03 seconds

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

Comparison of Airborne Lead Concentration in and Around Lead Production Plant (재생 납 생산 공장과 인근 지역의 공기 중 납 농도 수준 비교)

  • Park, Changhwan;Park, Yunkyung;Oh, Younhee;Choi, Inja;Cha, Wonseok;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Objective: This study is conducted to evaluate airborne lead concentration in and around lead production plant. Methods: Airborne lead concentration was monitored simultaneously inside of the processes of lead recycling factory and outside of factory which include stack, boundary of factory and residential area 1 km and 7.5 km from factory, respectively. All samples were measured three times at 1.5 m from the ground and analyzed using inductively coupled plasma mass spectrometer, inductively coupled plasma optical emission spectrometer or flame atomic absorption spectrometer. Results: All airborne lead concentrations measured inside of factory($13.9{\mu}g/m^3-252.9{\mu}g/m^3$) and outside of factory($0.001{\mu}g/m^3-54.97{\mu}g/m^3$) showed log-normal distribution. Geometric mean lead concentration, $54.81{\mu}g/m^3$, measured inside of factory was significantly higher than outside of factory, $0.20{\mu}g/m^3$(p<0.01). Among the samples measured inside the factory, lead concentration was the highest in the refining process($59.02{\mu}g/m^3-252.9{\mu}g/m^3$). In the case of the samples outside the factory, the nearest chimney was the highest($3.84{\mu}g/m^3-54.97{\mu}g/m^3$), and the lead concentration at the farthest place, 7.5 km from the factory was the lowest($0.001{\mu}g/m^3-1.7{\mu}g/m^3$). The arithmetic lead concentration, $0.45{\mu}g/m^3$ in the residential area near the factory was below the atmospheric environment standard of $0.5{\mu}g/m^3$, but the maximum concentration of $3.4{\mu}g/m^3$ was exceeded. Conclusions: Airborne lead concentration in residential area, 1 km away from lead recycling plant, may exceed ambient air standard of $0.5{\mu}g/m^3$.

Prioritizing for Selection of New High-heat Risk Industries and Thermal Risk Assessment (신규 고열 위험 업종 선정을 위한 우선순위 및 온열 위험 평가)

  • Saemi Shin;Hea Min Lee;Nosung Ki;Jeongmin Park;Sang-Hoon Byeon;Sungho Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.230-246
    • /
    • 2023
  • Objectives: The climate crisis has arrived and heat-related illnesses are increasing. It is necessary to discover new high-heat risk industries and understand the environment . It is also necessary to prioritize risks of industries that have not been included in the management target to date. The study was intended to monitor and evaluate the thermal risk of high-priority workplaces. Methods: A prioritization method was developed based on five factors: occurrence of and death due to heat-related illnesses, work environment monitoring, indoor work rate, small heat source, and limited heat dissipation. it, was applied to industrial accidents caused by heat-related illnesses. Wet bulb temperature index and apparent temperature were measured in July and August at 24 workplaces in seven industries and assessed for thermal risk. Results: The wet bulb temperature index was in the range of 23.8~31.9℃, and exposure limits were exceeded in the growing of crops, food services activities and accommodation, and building construction. The apparent temperature was in the range of 26.8~36.7℃, and exceeded the temperature standard for issuing heatwave warnings in growing of crops, food services activities and accommodation, warehousing, welding, and building construction. Both temperature index in growing of crops and building construction were higher than the outside air temperature. Conclusions: In the workplace, risks in industries that have not be controlled and recognized through existing systems was identified. it is necessary to provide break times according to the work-rest time ratio required during dangerous time period.

Evaluation of Formaldehyde Exposure for Formalin Spraying Work of Fish Farm Workers (양식업 종사자 포르말린 살포 작업에 대한 포름알데히드 노출평가)

  • Eun Young Kim;Sungwon Choi;Sungsook Lee;Hyerim Son;Jin Ee Baek;Jae Hoon Shin;Deaho Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.403-411
    • /
    • 2023
  • Objectives: Formalin is used as an anthelmintic in farms where flounder are raised. In this study, we aim to identify formaldehyde exposure levels for aquaculture industry workers and provide basic data for managing formaldehyde exposure. Methods: Exposure levels of formaldehyde in the air, including formalin spraying operations, were assessed separately for personal and area samples. In addition, considering the formalin administration method, dermal exposure to the hands was estimated when administering the chemical, and dermal exposure to the legs during water tank work was estimated by collecting water in the water tank and evaluating the amount of formaldehyde remaining. Finally, the respiratory exposure level and the estimated dermal exposure level were added to derive the total exposure level and compared with the maximum allowable human dose. Results: As a result of the airborne evaluation, the formaldehyde concentration of the worker (1 person) who performed the formalin spraying and flounder sorting was 33.61 ppb, and the arithmetic mean of formaldehyde concentrations of the workers (3 people) who only performed the flounder sorting was 3.28 ppb (range: 2.25-4.89 ppb). In the case of dermal exposure, when spraying formalin once, the amount was estimated to be 0.33-2.62 mg when wearing protective gear and 3.27-26.12 mg when not wearing it. Conclusions: There was a difference in the formaldehyde exposure level of workers depending on their operation of handling formalin and whether or not protective gear was worn. In particular, because the level of formaldehyde exposure due to dermal exposure can be significant, there is a need to improve formalin administration methods in a way that avoids skin contact as much as possible.

Review of Problems with Use of Halogenated Cleaning Solvents Revealed through Case Studies of Cleaning Solvent Poisoning and Analysis of Domestic and Overseas Regulations (세척제 용매 중독 사례와 국내·외 규제 검토를 통한 할로겐화 용매 세척제 사용의 문제점 고찰)

  • Naroo Lee;Hye Jin Lee;Sujin Jeong;Dohee Lee;Arom Shin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2023
  • Objectives: We examine cases of chemical poisoning that occurred in the cleaning of metal parts and the regulations on halogenated solvents in other countries and propose regulations necessary to prevent chemical poisoning from halogenated solvents. Methods: We collected cases of chemical poisoning through the website of the Korea Occupational Safety and Health Agency. A review of the literature was conducted focusing on regulations related to halogenated solvents in the United States and the European Union, particularly for cleaning metal parts. Among the Material Safety Data Sheets submitted to the government, MSDS containing eleven substances were extracted to confirm the composition and product use. We investigated cleaning methods for metal parts used in South Korea. For the hazard classification, the European Chemicals Agency or Japan's NITE's website was used. Results: In the case of poisoning, the cleaning methods involving trichloromethane were dipping and dry, which was not found in the literature. It was confirmed that many halogenated solvents and dimethyl carbonate were used for metal cleaning in South Korea. In vapor degreasing using TCE in the USA, even if the facility is strictly managed, such as by installing cooling coils in open cleaning facilities, the risk of exposure to TCE is considered to be not only carcinogenic but also a concern for acute and chronic effects. In comparison, exposure through Korean work methods such as dipping and drying operations is inevitably much higher. Conclusions: The transition to water-based cleaning with low-hazard chemicals should be a priority in the cleaning process. In the case of metal parts that require precise cleaning, if the use of a halogenated solvent is inevitable, a closed degreasing facility should be used to minimize exposure. The current regulations in the Occupational Safety and Health Act, the Chemical Substances Control Act, and the Air Environment Conservation Act do not require cleaning facilities to minimize emissions. To protect the health of workers using halogenated solvents to clean metal parts, regulations that require a fundamental reduction in exposure will be necessary.

Investigation of Acrylamide Contents in Frozen Foods According to the Cooking Method (가열조리에 따른 냉동식품의 아크릴아마이드 함량조사)

  • You-Jin Lee;Myung-Gil Kim;Hye-Jung Kwon;Ho-Jeong Bae;Kyong-Suk Lim;Eun-Jin Baek;Myung-Jin Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.476-482
    • /
    • 2023
  • This study aimed to investigate the acrylamide content in frozen food products after cooking. Twenty samples of bread (Group 1) and 30 samples of processed tuberous and corn vegetable products (Group 2) were selected. Acrylamide levels were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS). The frozen food samples were heated using the air fryer cooking method according to the product packaging and were compared to ready-to-eat French fries (Group 3). The results showed that the acrylamide content was the highest in group 3, followed by that in group 2 and group 1. The acrylamide content of all the samples was found to be within the domestic recommended standard of 1 mg/kg. However, when the samples that exceeded EU benchmark level (0.5 mg/kg) were selected and cooked using the deep-fat frying method according to the product packaging, one of them showed the acrylamide content of 1.83 mg/kg, which exceeded the domestic recommended standard. The present study highlights the need for continued evaluation and management to reduce acrylamide contents in frozen foods, as increasing domestic exposure to acrylamide is concerning.

Proposals for Revising the Occupational Exposure Limits for Aluminum in Korea (국내 알루미늄 노출실태 및 노출기준 개정 제안)

  • Seung Won Kim;Young Gyu Phee;Yong-Joon Baek;Taejin Chung;Hye-Sil Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.85-97
    • /
    • 2024
  • Objectives: This study was intended to investigate the revision status of the occupational exposure standards for aluminum at home and abroad; to investigate worker exposure at domestic aluminum manufacturing and handling workplaces; to conduct social and economic evaluation for the revision of domestic aluminum exposure limits. Methods: We investigated the current status of occupational exposure limits for aluminum at home and abroad, and analyzed supporting data. An exposure survey was conducted targeting domestic aluminum manufacturing and handling workplaces. Based on these, revised aluminum occupational exposure limits were proposed. Results: The major aluminum exposure limits at home and abroad show a notable difference. The toxicity of aluminum, which was revealed through animal experiments and epidemiological investigations. The average concentration of aluminum in the air at 12 workplaces was 0.016 mg/m3, and the maximum was 0.0776 mg/m3. When total dust and respiratory dust were measured side by side and simultaneously for the same process, 12.1% of the total mass concentration of aluminum dust was respiratory dust. As a result of measuring and comparing the size distribution of dust with an optical particle counter in real time, 48.1% of the total dust in the form of welding fume and pyro-powder was respiratory dust. Based on the literature review and workplace survey, three proposals for changing the aluminum exposure limit were proposed. Proposal (1): For all types, 10 mg/m3 is unified as the exposure limit except for soluble salts and alkyls. Proposal (2): 1(R) mg/m3 as the exposure limit for all forms except soluble salts and alkyl. Proposal (3): 1(R) mg/m3 for pyro-powder and welding fume, and 10 mg/m3 for metal dust, aluminum oxide, and insoluble compounds as exposure standards. A pyro-powder was defined as dry aluminum powder of 200 mesh size (74 ㎛) or smaller (larger size classified as metal dust). Reason for setting: In the workplace survey, the ratio of respiratory dust to total dust was analyzed to be about 1:10, so it was judged that the domestic standard and the ACGIH standard were compatible. Conclusions: In all scenarios according to the revision of the exposure standard, the B/C ratio was greater than 1 or only benefits existed, so it was evaluated as sufficiently reasonable as a result of the socio-economic evaluation.

Microbiological Assessment of Home-Delivered Meals for Children from Low-income Families during Production and Delivery (결식아동을 위한 가정배달 도시락의 생산과 배달과정 중 미생물적 평가)

  • Moon, Jeong-A;Yoo, Chang-Hee;Lee, Kyung-Eun
    • Journal of the Korean Dietetic Association
    • /
    • v.19 no.3
    • /
    • pp.236-252
    • /
    • 2013
  • The purpose of this study was to assess the microbiological quality of home-delivered meals during production and delivery for children from low-income families. Production flows from a facility in Seoul that provides home-delivered meals were analyzed and the time-temperature of the food was measured. Microbiological assessment was performed for the production environment, personal hygiene, and food samples at each production and delivery step based on the process approach. It took 2 hours or longer from completion of production to meal delivery. An aerobic colony count (ACC) and coliform were not detected at knives, cutting boards, and dish towels. However, ACC (at pre-preparation, preparation, and packing areas) and coliform (at the preparation area) were detected on the hands and gloves of employees. Air-borne bacterial counts varied according to day and preparation area (ND~6 CFU/plate/15 min). Food temperatures, on the completion of production and meal delivery, fell into temperature danger zones. ACC and coliform counts of raw ingredients did not decrease after pre-preparation (washing and sanitizing) for menus involving food preparation with no cook step. ACC decreased after cooking step for menus of food preparation with cook step, but the ACC of the stir-fried and seasoned dried filefish fillet on the completion of cooking was too numerous to count due to improper heating. The ACC of seasoned young Chinese cabbages (a menu with complex food preparation) increased during delivery (from 2.5 log CFU/ml to 5.0 log CFU/ml). This qualitative assessment of foodborne pathogens revealed that B. cereus was detected in vegetable and meat product menus. These results suggest time-temperature control is necessary during production and delivery and management guidelines during production of home-delivered meals are provided for safe production.

Study on Timely Characteristics of Forest Phytoncide in Ulsan Metropolitan Trails (시간변화에 따른 울산지역 산책로의 피톤치드 특성연구)

  • Park, Heung Jai;Yu, Bong Gwan;Park, Sun Ho;Lee, Jin Yeol;Hahm, Yoo Sik;Jeong, Seong Wook;Byeon, Ki Yeong;Lee, Hyun Hee;Choi, Seung Hoon;Son, Ji Min;Lee, Mi Lim
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1451-1456
    • /
    • 2013
  • This study was conducted to investigate the timely characteristics of phytoncide in forest trail of Ulsan Metropolitan. Air samples were collected from July to October 2011. The phytoncide were detected and quantified using a Gas Chromatograph Mass Spectrometer(GC/MSD). This study are summarized as follows ; The highest levels of phytoncide concentration of August is higher than other months in Munsu Mt. and Samho Mt.(town mountains). The higher phytoncide emission rates found in the morning and in the evening. The concentration of phytoncide was understanded to be greatly influenced by environment change of day time.