• Title/Summary/Keyword: Air Gap Flux

Search Result 296, Processing Time 0.021 seconds

Detecting Method for Broken Rotor Bar of Induction Motor by Measuring Air-gap Flux (공극자속 측정에 의한 유도전동기 회전자의 Broken Bar 검출기법)

  • Hwang, Don-Ha;Kang, Dong-Sik;Lee, Jin-Hee;Choi, Kyeong-Ho;Kim, Dong-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.475-480
    • /
    • 2006
  • In this paper, a new approach for detecting broken rotor bars in a squirrel-cage induction motor is proposed. The air-gap flux variation analysis was done using search coils inserted in stator slots when broken rotor bar occurs. An accurate modeling and analysis of air-gap flux variation in the induction motor are developed using finite-element (FE) software packages, and measurement of the flux are made using search coils. The simulation was done for the induction motor with 380 [V], 5 [HP], 4 Poles, 1,742 [rpm] ratings using the commercial FE analysis tool. The simulation and experiment results can be useful for detecting the broken rotor bar of an induction motor.

  • PDF

Analysis on Air-Gap Magnetic Flux of Synchronous Generator According to Short-Circuit Types in Winding (권선단락 유형별 동기발전기의 공극자속 파형 분석)

  • Bae, Duck-Kweon;Kim, Dong-Hun;Park, Jung-Shin;Lee, Dong-Young;Lee, Sung-Ill
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.929-935
    • /
    • 2009
  • As modem industrialized society progresses, the demand for electric power is increasing rapidly. The electric power system is getting amazingly bigger and complicated, which can easily induce serious troubles from the potential of large fault problems and/or system failure. The monitoring and diagnosis of the electric machine for the fault detection and protection has been important part in the electric power system. Most faults in the generator appear in the winding. This paper presents the air-gap magnetic flux characteristic of a small-scale 2-pole synchronous generator according to the faults in the field winding to protect the generator from the fault. The magnetic flux patterns in air-gap of a generator under various fault conditions as well as a normal state are simulated by using finite element method. These results are successfully applied to the detection and diagnosis of the short-circuit condition in rotor windings of a high capacitor generator.

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

Surface Treatment of Air Gap Membrane Distillation (AGMD) Condensation Plates: Techniques and Influences on Module Performance

  • Harianto, Rachel Ananda;Aryapratama, Rio;Lee, Seockheon;Jo, Wonjin;Lee, Heon Ju
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.248-253
    • /
    • 2014
  • Air Gap Membrane Distillation (AGMD) is one of several technologies that can be used to solve problems fresh water availability. AGMD exhibits several advantages, including low conductive heat loss and higher thermal efficiency, due to the presence of an air gap between the membrane and condensation wall. A previous study by Bhardwaj found that the condensation surface properties (materials and contact angle) affected the total collected fresh water in the solar distillation process. However, the process condition differences between solar distillation and AGMD might result in different condensation phenomena. In contrast, N. Miljkovic showed that a hydrophobic surface has higher condensation heat transfer. Moreover, to the best of our knowledge, there is no study that investigates the effect of condensation surface properties in AGMD to overall process performance (i.e. flux and thermal efficiency). Thus, in this study, we treated the AGMD condensation surface to make it hydrophobic or hydrophilic. The condensation surface could be made hydrophilic by immersing and boiling plate in deionized (DI) water, which caused the formation of hydrophilic aluminum hydroxide (AlOOH) nanostructures. Afterwards, the treated plate was coated using hexamethyldisiloxane (HMDSO) through plasma-enhanced chemical vapor deposition (PECVD). The result indicated that condensation surface properties do not affect the permeate flux or thermal efficiency significantly. In general, the permeate flux and thermal efficiency for the treated plates were lower than those of the non-treated plate (pristine). However, at a 1 mm and 3 mm air gap, the treated plate outperformed the non-treated plate (pristine) in terms of permeate flux. Therefore, although surface wettability effect was not significant, it still provided a little influence.

Improvement in Efficiency of CSI fed Induction Motor by Means of Flux Control (전류형 인버어터로 작동되는 유도전동기의 자동제어에 의한 효율게선에 관한 연구)

  • 박민호;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.8
    • /
    • pp.46-53
    • /
    • 1982
  • When an induction motor is lightly loaded, the efficiency can be very substantially improved by controlling the air gap flux. Thus in the system which requires constant speed under either normal load or light load, it is possible to save energy by means of controlling the air gap flux. In this paper, the required relationships between stator current and rotor slip frequency for optimal efficiency control is derived and the improved control loop is suggested.

  • PDF

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

A Study on Transverse Edge Effect in Linear Induction Motor With Sheet Rotor (Sheet Rotor를 가진 직선형 유도전동기의 Transverse Edge Effect에 관한 연구)

  • Yun Jong Lee;Dal Ho Im;Soo Hyun Baek
    • 전기의세계
    • /
    • v.23 no.4
    • /
    • pp.39-45
    • /
    • 1974
  • In most previous research work, the transverse edge effect has been allowed for only by use of a relativity-increase factor. This paper gives a more exact treatment. A two-dimensional-field analysis is presented for the problem of sheet rotor linear induction motor with finite width the method used takes account of flux leakage in the space between the stator and secondary sheet rotor as well as in the secondary itself. Equations are derived for the flux density distribution in the air gap and for the starting face, in each case as a function of stator current. The cross gap flux density peaks towards athe edge of the stator. This phenomena is known as the transverse edge effect. Measurements of the flux density in the air gap and starting force on a linear induction motor with sheet rotor of different width showed a reasonable agreement,suggest that it would be desirable to take into account also, at least for this motor in which severe redistribution occurs.

  • PDF

Characteristic analysis of axial-flux type Brush Less DC motor (Axial-flux type BLDC 전동기의 특성해석)

  • Park Su-Beom;Lee Shang-Ho;Nam Hyuk;Hong Jung-Pyo;Lee Jeong-jong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1058-1060
    • /
    • 2004
  • This paper presents a characteristic analysis method for an air gap flux density of axial-flux type brushless dc (BLDC) motor. The magnetic flux density for the torque, and vertical force characteristics is calculated by using analytical method, based on the concept of magnetic charge. The calculated results by the presented method is compared with those by 3 dimensional finite element method (3D FEM). Using the presented method, the characteristics of single and double sided axial-flux type BLDC motors are investigated through distributions of air gap flux density.

  • PDF

Study on Transformer and Inductor Using Equivalent Air gap to Partial Flux Saturation (국부적 자속 포화 현상을 이용한 리엑터 및 변압기의 공극 등가 모델에 관한 연구)

  • Park, Sung-Jun;Lee, Sang_Hun;Kim, Jeong-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.103-112
    • /
    • 2014
  • BY the Transformers and reactors, the input electrical energy is converted into magnetic energy. At the end through the magnetic energy was passed at the output parameter. Specially At the flyback transformer or a reactor airgap were designed to contain more magnetic energy. But that work is very difficult for the optimal design. It is that Contradictions are between the length of the Air-gap, Winding inductance, DC bias. As to e Several conflicting conditions in order to determine the optimum Air-gap has a lot of experience and trial & error is necessary. The approach proposed in this paper, the auxiliary winding on the core attached to part of primary core, that by applying a DC voltage has a dramatic effect like Core with designed Air-gap. This inventiveness and advantage is to regulate arbitrarily the Saturation Flux Quantity by the input signal to secondary winding. Accordingly obtained the biggest effect is that increasing limits of the saturation current destined by the material and shape of the conventional core. In other words, that can decreas the size of the transformer and reactor, While maintaining the current saturation capacity. This paper, prove its effect as using the local flux saturation in transformers and reactors for research by the computer program using the finite element method (FEM) simulation, followed by actual experiment to verify