• 제목/요약/키워드: Air Flow Distribution Plate

검색결과 68건 처리시간 0.024초

가스보일러 연소실 공기분배판의 기하학적 형상에 따른 유동특성 해석 (Flow Characteristic Analysis in Accordance with Geometrical Modification of Air Distribution Plate in Gasboiler Combustion Chamber)

  • 김재중;손영갑;장석원;유동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.859-864
    • /
    • 2000
  • This paper reports a numerical flow characteristic analysis in gas boiler combustion chamber. The numerical results with simplification and assumptions were found within 30% of the experiment. A lot of geometrical modification has been invested in attempt to obtain the uniform flow in the combustion chamber exit. As a result, the velocity magnitude of the combustion chamber is relate with the hole size in air distribution plate. The velocity uniformity of the combustion chamber is relate with the number of holes and location in air distribution plate.

  • PDF

AN EXPERIMENTAL STUDY ON AIR-WATER COUNTERCURRENT FLOW LIMITATION IN THE UPPER PLENUM WITH A MULTI-HOLE PLATE

  • NO HEE CHEON;LEE KYUNG-WON;SONG CHUL-HWA
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.557-564
    • /
    • 2005
  • Air-water countercurrent flow limitation at perforated plates with four holes was investigated in a vertical tank to see the effects of the plate thickness, the number of hole, and the diameter of the hole on the onset of CCFL. The thickness of plates was 1 cm and 4 cm, with a relatively large hole diameter of 5 cm. The collapsed water level formed on the perforated plate and its distribution in the upper plenum were measured. The gas flow rate in the multi-hole plate is relatively higher than one in the single tube because some of holes in the multi-hole plate provide a flow path fur liquid with less air-liquid resistance than in the single tube. The onset of CCFL occurred at nearly the same air flow rate regardless of the plate thickness. The negligible effect of the plate thickness on CCFL means that the flooding is initiated at the top of the plate rather than at its bottom. It turns out that $j_k$ and $K_k$ better fit the data than $H_k$ when hole diameter is greater than 2.86 cm. In our experimental ranges, the collapsed water levels at the onset of CCFL ranged from 7.5 cm to 10.5 cm. There was no three dimensional distribution of water level before and after the onset of CCFL.

구조 변형을 고려한 연료전지 공기판의 유동 해석 (Structural Deformation and Flow Analysis for Designing Air Plate of a Fuel Cell)

  • 양지혜;박정선
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.877-884
    • /
    • 2004
  • In this paper, structural analysis is performed to investigate the deformation of porous media in a proton exchange membrane fuel cell (PEMFC). Structural deformation of air plate of the fuel cell causes the change in configuration and cross sectional area of the channel. The distributions of mass flow rate and pressure are major factors to decide the performance of a PEMFC. These factors are affected by channel configuration of air plate. Two kinds of numerical air plate models are suggested for flow analyses. Deformed porous media and undeformed porous media are considered for the two models. The Numerical flow analysis results between deformed porous media and undeformed porous media have some discrepancy in pressure distribution. The pressure and velocity distribution under a working condition are numerically calculated to predict the performance of the air plates. Pressure and velocity distributions are compared for two models. It is shown that structural deformation makes difference in flow analysis results.

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

구조 해석과 유동 해석을 통한 연료전지 공기판 설계 (Structural and Flow Analysis for Designing Air Plate of a Fuel Cell)

  • 박정선;양지혜;이원용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

판형열교환기 핀 홀의 위치 및 유속에 따른 누수율 및 내부 유동 특성에 관한 실험적 연구 (Experimental Study on Leak Flow Rate and Inner Flow Characteristics of Plate Heat Exchangers with Pin-hole Location and Mass Flux)

  • 송강섭;백창현;김성우;김용찬
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.171-177
    • /
    • 2016
  • Plate heat exchangers have been widely used in various fields because of their high heat transfer coefficients, small area of installation, and ease of maintenance compared to other heat exchangers. However, when plate heat exchanger is used for a long time, leak can occur due to inner crack. Therefore, it is important to understand the inner flow characteristics in plate heat exchangers. In this study, the inner flow characteristics and flow rate of plate heat exchanger were evaluated using various flow directions, pin-hole sizes, and Reynolds numbers. In downflow, initially most water flowed to the opposite of the inlet due to distribution region. Then it gradually had a uniform distribution due to chevron configuration. In upflow, it had a uniform flow consistently due to the dominant gravity effect. As the Reynolds number increased, the leak rate was decreased due to the inertia effect regardless of the flow direction.

연료전지 분리판의 형상설계를 위한 유동해석 (Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell)

  • 박정선;정혜미
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향 (A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid)

  • 강동진;오원태
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

최적의 타공판을 통한 열풍건조로 성능향상 연구 (Performance Improvement of Hot-Air Dryer Through Optimum Round-Hole Plate)

  • 서응수;김용식;황중국;채영석;심재술
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.947-954
    • /
    • 2015
  • 염료감응형 태양전지용 플렉시블 필름에 도포된 코팅물질의 균질한 코팅은 제품의 성능과 내구성과 매우 밀접한 관계가 있고, 균질한 코팅은 열풍건조로 노즐에서의 균일한 온도분포와 질량유량에 의해 얻어질 수 있다. 본 연구에서 열풍건조로의 성능향상에 영향을 주는 다양한 인자들에 대한 수치해석을 수행함으로써 열풍건조로 출구의 균일한 온도분포와 질량유량을 얻고자 하였다. 수치해석 모델은 유동방정식과 에너지방정식으로 구성되었고, 수치해석을 모델의 검증을 위해 수치해석 결과값과 실험결과를 비교하였다. 연구결과로서 열풍건조로의 타공판이 균일한 온도분포 및 질량유량에 큰 영향을 미친다는 것을 알 수 있었다.

헤더-채널 분기관에서의 헤더 입구 형상이 2상 유동 분배에 미치는 영향에 대한 실험적 연구 (Effect of Inlet Geometries on the Two-Phase Flow Distribution at Header-Channel Junction)

  • 이준경
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.324-330
    • /
    • 2013
  • The main objective of this work is to experimentally investigate the effect of inlet geometries on the distribution of two-phase annular flow at header-channel junctions simulating the corresponding parts of compact heat exchangers. The cross-section of the header and the channels were fixed to $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Experiments were performed for the mass flux and the mass quality ranges of $30{\sim}140kg/m^2s$ and 0.3~0.7, respectively. Air and water were used as the test fluids. Three different inlet geometries of the header were tested:no restriction (case A), a single 8 mm hole at the center (case B), and nine 2 mm holes around the center (case C) at the inlet, respectively. The tendencies of the two-phase flow distribution were different, in each case. For cases B and C (flow resistance exists), more uniform flow distribution results were seen, compared with case A(no flow resistance), due to the flow pattern change to mist flow from annular flow at the inlet, and the flow recirculation near the end plate of the header.