• Title/Summary/Keyword: Air Entrainment

Search Result 168, Processing Time 0.038 seconds

An Experimental and Numerical Study On Structure of Twin-fluid Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 실험 및 수치해석적 연구)

  • Ju, Seoung-Young;Kim, Dong-Il;Oh, Sang-Heun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.465-470
    • /
    • 2001
  • The entrainment of air into spray jets has been considered. Entrainment is defined as the quantity of ambient gas that is drawn into a spray. Numerical study is performed to investigate an air entrainment into spray jets and compared with results of experiment of air entrainment. Experimental measurements were performed with PDA and PIV system. Experimental and numerical results show that the air entrainment was affected droplet size and velocity.

  • PDF

An Experimental Study on Structure of Air-assist Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, H.C.;Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The effect of air entrainment in twin-fluid spray structure is investigated experimentally by varing the amount of itemizing air. The air entrainment is expected to affect on droplet size and velocity, droplet number density, turbulent kinetic energy and vorticity. PDA(Phase Doppler Anemometer) and PIV(Particle Image Velocimetry) system are used to measure those important factors in analyzing spray structure. The results show that spray structure consists of three distinctive regions ; the atomizing region near nozzle, characterizing strong convective effect, the central core region where droplets are accelerated, and the spray sheath region where droplets are decelerated due to air entrainment. The local air entrainment rate is largest near nozzle, characterizing strong turbulent kinetic energy and vorticity but deceases along axial distance.

  • PDF

HYDRAULIC ANALYSIS OF OXYGEN TRANSFER THROUGH AIR ENTRAINMENT IN RIPARIAN RIFFLES

  • Kim, Jin-Hong
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.127-139
    • /
    • 2003
  • This paper presents the hydraulic analysis of the oxygen transfer through the air entrainment and the relationships between the efficiency of the oxygen transfer and the hydraulic parameters in the riparian riffles. Field survey on the pool-riffle formation of the river reach and the measurements of the oxygen transfer in the riffles were performed. Air entrainment occurred more frequently in the edged gravels rather than in the round and edgeless ones, and it was formed mainly from behind the trailing edges of the gravels. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number, but to be not closely related to the particle diameter. Average value of oxygen transfer in the riffles of study area was about 0.085, which shows good efficiency compared with results of smooth chute. Variation of the water level, which increases in proportion to the flow velocity and the flow discharge, seems to make the air entrainment more active, but has not been verified quantitatively. Relationships between the air entrainment and the variation of the water level must be considered in the further study.

  • PDF

A Computational Analysis of Air Entrainment with a Nip Roller

  • Lee, Jae-Yong;Chang, Young-Bae;Shelton, John J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF

An experimental investigation on the errect of air entrainment (공기유입이 화재강도에 미치는 영향에 대한 실험적인 연구)

  • Kim, Jin-Guk
    • Fire Protection Technology
    • /
    • s.21
    • /
    • pp.5-12
    • /
    • 1996
  • An experimental investigation has been made with the objcetive of studying the effects of air entrainment of fire strength. A rich jet flame is considered as an fire, and fire, and the air entrainment is controlled by introducing the tone excitation which is generated by means of a loudspeaker-driven cavity. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. As the excitation intensity increases, the amplitude of oscillating velocity for inducing air entrainment is increased, the flame height decreased and the structure of diffusion flame gradually transformed to that of premixed flame.

  • PDF

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

An Experimental Study on Structure of Twin-Fluid Spray with Air Entrainment (공기 유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, Hyo-Cheol;Kim, Dong-Il;Oh, Sang-Heun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.925-930
    • /
    • 2000
  • This paper is investigated the entrainment of air into sprays which has significant effects on the combustion efficiency, stability of flame using the air-assisted twin-fluid nozzle in non-burning. The factors which may be expected to affect the entrainment of air by a liquid spray are: Relative velocity of droplet and ambient gas; Drop size and size distribution; Density and other property of the liquid. Here, axial, radial velocity and turbulent kinetic energy of spray droplet was measured with the PIV(Particle Image Velocimetry). Spray characteristics were also visualized using CCD camera. The results indicate that the entrainment rate increases more or less non-linearly with the downstream region.

  • PDF

Mass Loss and Air Entrainment Rate of Whirl Fire by Height of Fire Source (화점높이 변화에 따른 Whirl Fire의 질량감소 및 공기유입속도)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • This study is intended to understand mass loss rate and air entrainment rate of the whirl fire by height of fire source. Liquid fuels were methanol and n-Heptane which are used in many studies of whirl fire. Size of vessel was 100 mm ${\times}$ 100 mm ${\times}$ 50 mm and the vessel was made by stainless steel. When height of fire source changed from 0 cm to 30 cm, air entrainment rate showed the fastest in case of 0 cm. And in the same height of fire source, average and maximum air entrainment rate showed the fastest in 30 cm of anemometer. From the results of whirl fire for methanol and n-Heptane, mass loss rate and air entrainment rate of n-Heptane was found to faster 1.33 to 1.58 times and 4.38 to 5.44 times compared with methanol, respectively. Consequently, mass loss rate and air entrainment rate in whirl fire was able to identified decrease as height of fire source increases and the higher the heating value, increases the that's value.

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF