• Title/Summary/Keyword: Air Eject

Search Result 4, Processing Time 0.017 seconds

Experimental Study for Development of Air Eject Defrost Equipment (공기분사식 제상장치 개발에 관한 실험적 연구)

  • Han, In-Geun;Kim, Chang-Yeong;Kim, Jae-Dol;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. Therefore, the proper defrosting operation period based on the new defrosting method is very important, and make a comparison between conventional method like electric defrost and new method in compression work, evaporation pressure, evaporation temperature.

A Study on the Analysis of Underwater Behaviors of Two Bodies Having Different Weight Characteristics (중량 특성이 다른 2종류 운동체의 수중거동 해석 연구)

  • Ahn, Jin-Hyeong;Jung, Chan-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • In this study, underwater behaviors of negative buoyant body and positive buoyant body, which are ejected from a platform, are compared through eject test and simulation. CFD(Computational Fluid Dynamics) method is used to calculate the hydrodynamic derivatives of negative buoyant body with varied hull. Hydrodynamic derivatives that cannot be calculated with CFD are used with the same values of base shape. The pitch angles of test data are much bigger than those of simulated data, and the reason is supposed to be the trailing air effect. A more accurate simulation is possible via modified force modeling which reflects this phenomenon. The underwater behaviors of positive buoyant body and negative buoyant body are somewhat different with each other at the same eject condition, but it may not be a problem in the view of operation.

Analysis of Ejection System of Projectile with Compressed Air (압축공기를 이용한 발사체 방출시스템 해석)

  • Kwon, Yong-Hun;Kim, Jun-Bum;Park, Warn-Gyu;Han, Myung-Chul;Ahn, Jae-Yul;Jung, Chan-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1488-1493
    • /
    • 2004
  • The purpose of the present work is to develop a compressed air discharging system to eject a projectile from the underwater. For the flow analysis of compressed air tank, projectile ejection tube, and pipe system, the air is assumed as an ideal gas, undergoing 1-dimensional axisymmetric, compressible flow, the Fanno flow analysis was applied. The commercial Fluent code was used to solve 3-D Navier-Stokes equation of the internal flow within the valve. The dynamics of the projectile within the ejection tube was assumed 1-degree of freedom. The calculations were performed to four cases of valve opening area ratio, i.e., 25%, 50%, 75%, and 100% opening area, at both depths of 10m and 50m. The results were shown as the figures of time variation of pressure of the compressed air tank and projectile ejection tube. The velocity and distance of the projectile were also predicted.

  • PDF

Development of aluminum powder feeding system (알루미늄입자의 유체화, 이송 및 점화에 대한 연구(I))

  • Lee, Sunkey;Kweon, Suhyeon;Lee, Byeong-Jun;Song, Dong Joo;Lee, Ji Hyung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.241-243
    • /
    • 2012
  • Experiments were conducted to get the design concepts for the continuous aluminum particle feeding system. Two opposed cylinders were used. Aluminum particles in one cylinder were ejected to the air by the supplying gas and the pressure of the other cylinder. It was not possible to eject more aluminum mass flowrate than that of gas if particles were just thrust by the pressure difference between two cylinders. Aluminum particle/air mixture in the flow system was successfully ignited by the electric spark.

  • PDF