• Title/Summary/Keyword: Air Dose Rate

Search Result 105, Processing Time 0.026 seconds

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.

Lung Cancer Screening With Low-dose Chest Computed Tomography: Experience From Radon-contaminated Regions in Kazakhstan

  • Panina, Alexandra;Kaidarova, Dilyara;Zholdybay, Zhamilya;Ainakulova, Akmaral;Amankulov, Jandos;Toleshbayev, Dias;Zhakenova, Zhanar;Khozhayev, Arman
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.273-279
    • /
    • 2022
  • Objectives: The aim of this study was to present the baseline results of a pilot project conducted to evaluate the effectiveness of lung cancer screening using low-dose chest computed tomography (CT) in regions with excessive radon levels in the Republic of Kazakhstan. Methods: In total, 3671 participants were screened by low-dose chest CT. Current, former, and never-smokers who resided in regions with elevated levels of radon in drinking water sources and indoor air, aged between 40 and 75 with no history of any cancer, and weighing less than 140 kg were included in the study. All lung nodules were categorized according to the American College of Radiology Lung Imaging Reporting and Data System (Lung-RADS 1.0). Results: Overall, 614 (16.7%) participants had positive baseline CT findings (Lung-RADS categories 3 and 4). Seventy-four cancers were detected, yielding an overall cancer detection rate of 2.0%, with 10.8% (8/74) stage I and a predominance of stage III (59.4%; 44/74). Women never-smokers and men current smokers had the highest cancer detection rates, at 2.9% (12/412) and 6.1% (12/196), respectively. Compared to never-smokers, higher odds ratios (ORs) of lung cancer detection were found in smokers (OR,2.48; 95% confidence interval [CI], 1.52 to 4.05, p<0.001) and former smokers (OR, 2.32; 95% CI, 1.06 to 5.06, p=0.003). The most common histologic type of cancer was adenocarcinoma (58.1%). Conclusions: Implementation of low-dose CT screening for lung cancer in regions with elevated radon levels is an effective method for both smokers and never-smokers.

Childrens' Health Risk Assessment on Indoor Hazardous Air Pollutants of Preschool Facility (유아교육시설 내 실내공기유해오염물질에 대한 어린이 건강위해성평가)

  • Koh, Yeon-Jung;Kim, Shin-Do;Park, Suk-Young;Jang, Seong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • In this study, the hazard rate of the indoor environment of Children's Educational Facilities in Seoul was conducted, in order to determine how the indoor environments of these facilities, where infants and children spend the most time of their away from home day, can effect their health. The way of measurement and analysis were done according to the Indoor Air Quality Standard Method, and the Risk Assessment was accomplished with several significant ways - Hazard Identification, Exposure Assessment, Dose-response Assessment, Risk Characterization, which are deighed by National Research Council (NRC). On each exposure factors, documentary and questionary research such as Epidemiological study and Toxicological study were conducted. The result of the CTE (Central tendency exposure) of Formaldehyde and Benzene by Monte-Carlo simulation was $6.79{\times}10^{-6}$, $2.50{\times}10^{-7}$ which in the case of Formaldehyde exceeded the permitted standard ($10^{-6}$) of the US EPA. The RME(Reasonable maximum exposure) was $7.31{\times}10^{-5}$, $2.65{\times}10^{-6}$ which did not exceed $10^{-4}$, the maximum permitted standards in the US EPA.

Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays (Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae;Oh, Jang-Jin;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • Central axis percentage depth-doses, P(%), were measured at the points from the 2.5cm depth of reference point to 20 cm depth with 2.5 cm interval. Distance from the X-ray target to the water phantom($30{\times}30{\times}30cm^3$) surface was 1 m, and at this point three different beam sizes of $5cm{\phi},\;10cm{\phi},\;and\;15cm{\phi}$ were used. While the X-ray tube voltage varied from 150 to 250 kV, the tube current remained constant at 5 mA. Absorbed dose rate in water, $\dot{D}_w$, was determined using the air kerma calibration factor, $N_k$, which was derived from the exposure calibration factor, $N_x$, of the NE 2571 ion chamber. The reference exposure rate, $\dot{X}_c$, was measured using the Exradin A-2 ion chamber calibrated at ETL, Japan. The half value layers of the X-rays determined to meet ETL calibration qualities. The absorbed dose rates determined at the calibration point were compared to the values obtained from Burlin's general cavity theory, and the percentage depth-dose values determined from $N_k$ showed a good agreement with the values of the published depth dose data(BJR Suppl. 17).

  • PDF

Determination of Derived Release Limits by the Concentration Factor Method (농축인자법에 의한 유도방출 기준 설정)

  • Byung Woo Kim;Byeung Kyu Kim;Jeong Ho Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.267-278
    • /
    • 1985
  • Some kinds of methods have been applied to regulate the exposure doses by the radioactive effluents from nuclear power plants. The essential one is primary dose equivalent limit recommended by the ICRP. When the primary limit cannot be applied directly for regulation, there have been dose equivalent index in case of external exposure, or maximum permissible concentration, annual limit on intake, derived air concentration and maximum permissible body burden in case of internal exposure. But the derived limit is required from the viewpoint of discharge, for those values are inadequate to control discharge rate directly. This study was carried out to derive the release limit for the Wolsung nuclear power plant by the concentration factor method. This method is based on the assumption of steady state transfer between environment compartments.

  • PDF

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad;Masoud S. Masoud;Mayeen Uddin Khandaker;Mohamed Y. Hanfi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2239-2246
    • /
    • 2024
  • The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

Determining Ion Collection Efficiency in a Liquid Ionization Chamber in Co-60 Beam (Co-60 빔에서 액체 전리함의 이온 수집 효율 결정 연구)

  • Choi, Sang Hyoun;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • Liquid ionization chamber is filled with liquid equivalent material unlike air filled ionization chamber. The high density material allow very small-volume chamber to be constructed that still have a sufficiently high sensitivity. However liquid ionization chamber should be considered for both initial recombination and general recombination. We, therefore, studied using the Co-60 beam as the continuous beam and the microLion chamber (PTW) for comparing the ion collection efficiency by Greening theory, two-dose rate method and our experiment method. The measurements were carried out using Theratron 780 as the cobalt machine and water phantom and 0.6 cc Farmer type ionization chamber was used with microLion chamber in same condition for measuring the charge of microLion chamber according to the dose rates. Dose rate was in 0.125~0.746 Gy/min and voltages applied to the microLion chamber were +400, +600 and +800 V. As the result, the collection efficiency by three method was generally less than 1%. In particular, our experimental collection efficiency was in good agreement within 0.3% with Greening theory except the lowest two dose rates. The collection efficiency by two-dose rate method also agreed with Greening theory generally less than 1%, but the difference was about 4% when the difference of two dose rates were lower. The ion recombination correction factors by Greening theory, two-dose rate method and our experiment were 1.0233, 1.0239 and 1.0316, respectively, in SSD 80 cm, depth 5 cm recommended by TRS-398 protocol. Therefore we confirmed that the loss by ion recombination was about 3% in this condition. We think that our experiment method for ion recombination correction will be useful tool for radiation dosimetry in continuous beam.

Effects of Coagulants and Ozone Concentration on the Livestock Manure Treatment Efficiency of AOF Process (AOF공정 중 응집제와 오존 농도가 가축분뇨 처리효율에 미치는 영향)

  • Jeong, Sung-Chol;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.311-315
    • /
    • 2016
  • The efficiency of manure treatment was investigated in terms of the pH, BOD, COD, SS, T-N and TP with a variation in the injection amount of PAC, polymer and ozone. The wastewater flow rate to the AOF is of $7.4m^3/hr$ with a reaction time of 30 minutes. The amount of PAC and polymer changed by 30, 35, 40 ml/min, and 30, 40, 50 ml/min, respectively. The amount of ozone injected varied from 110, 125, and $150kg-O_3/hr$. The optimum manure treatment performance was found for a PAC of 35 ml/min for the COD and SS, with polymer of 30 ml/min, and ozone injection of $150kg-O^3/hr$. A substantially optimum dose for each PAC, polymer, and ozone was also found to exist.

Improvement of PM10 Forecasting Performance using Membership Function and DNN (멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상)

  • Yu, Suk Hyun;Jeon, Young Tae;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.