• Title/Summary/Keyword: Air Compressor

Search Result 1,025, Processing Time 0.033 seconds

An Experimental Study on the Estimation of Oil Discharge Rate from Inverter Rotary Compressor (인버터 로터리 압축기 오일 토출량 산정의 실험적 고찰)

  • Sin, Hyun-Seok;Byun, Soon-Seok;Tae, Sang-Jin;Moon, Je-Myung;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.28-32
    • /
    • 2011
  • The inverter rotary compressor discharges refrigerant and compressor oil in air-conditioning systems. The compressor oil which discharged form compressor decreases the efficiency of heat exchanger and affects the compressor operation. Recently, several studies are in progress for reducing the compressor oil. Before the reduction of compressor oil discharge rate, the quantitative measurement and evaluation method are required. In order to cope with this requirement we have developed the measurement technic of oil discharge rate. The reliability assessment was carried out approximately 0.1% of the errors with compressor performance indicators. The acceptable errors were to ensure the reliability of measurement technic. In the experiment results at several conditions, The oil discharge rate of heating operation has been confirmed average 3.7 times more than cooling operation. In this study the evaluation method and the experimental results of oil discharge rate in air-conditioning systems are presented with various operating conditions.

Experimental Study on the Performance of Refrigeration Cycle for various RPM of Inverter Scroll Compressor (전동 스크롤압축기의 운전rpm에 따른 냉동사이클의 성능에 대한 실험적 연구)

  • Lee, K.S.;Lee, K.A.;Lee, H.Y.;Lee, Y.S.;Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.42-48
    • /
    • 2014
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle with inverter scroll compressor. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDy to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. This study revealed that the condenser temperature and pressure were increased and the evaporator temperature and pressure were decreased with the increased compressor speed. And also, the COP was decreased with increased compressor speed. Those results can be used the basic and fundamental data to design the air-conditioning cycle with inverter scroll compressor.

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Vibration Analysis of Rotary Compressor based on Vibration Intensity (진동인텐시티를 이용한 로타리압축기 진동 해석)

  • 안병하;이장우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.166-172
    • /
    • 2003
  • Vibration and Noise of air conditioner are entirely determined by compressor vibration. Compressor vibration transmitted to the enclosure of air conditioner or pipes connected compressor with heat exchanger. Enclosure generate(noise and vibration. Therefore, the analysis of compressor vibration analysis is considered significant technical issue. For the reduction of vibration of compressor, it is necessary to grasp correctly vibration transmission paths and excitation sources in the compressor shell. Because, shell ( Surface of compressor ) shows whole vibration characteristic of compressor mechanism. In this paper, vibration intensity was applied to measure vibration energy flow on the shell .From this technique, it is possible to catch the path of vibration propagation along the one cycle and the location of vibration energy sources may change with time on the shell.

Vibration Analysis of Rotary Compressor based on Vibration Intensity (진동인텐시티를 이용한 로타리압축기 진동 해석)

  • 이장우;김영종;안병하
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.973-978
    • /
    • 2003
  • Vibration and Noise of air conditioner are entirely determined by compressor vibration. Compressor vibration transmitted to the enclosure of air conditioner or Pipes connected compressor with heat exchanger. Enclosure generated noise and vibration. Therefore, the analysis of compressor vibration analysis is considered significant technical issue. For the reduction of vibration of compressor, it is necessary to grasp correctly vibration transmission paths and excitation sources in the compressor shell. Because, shell (Surface of compressor) shows whole vibration characteristic of compressor mechanism. In this paper, vibration intensity was applied to measure vibration energy flow on the shell. From this technique, it is possible to catch the path of vibration propagation along the one cycle and the location of vibration energy sources may change with time on the shell.

  • PDF

Analysis of Oil Behavior inside Rotary Compressor Using Developed Visualization Technique

  • Cho Pil-Jae;Lee Seung-Kap;Youn Young;Ko Han-Seo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • An efficiency of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured. in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using a manufactured test model.

A Study on the Decrease of Compressor Discharge Temperature Using Subcooling Bypass Technology (Subcooling Bypass Technology를 적용한 압축기 토출 냉매 온도 감소에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-332
    • /
    • 2009
  • The purpose of the study is to decrease the refrigerant temperature at the outlet of the compressor under high thermal load conditions for air cooled vapor compression refrigeration system. The subcooling bypass line called subcooling bypass technology(SBT) is installed to the window type A/C system to investigate the performance test. The standard air calorimeter test method is applied to measure the refrigerant temperature at the outlet of the compressor, cooling capacity, power consumption, and system EER. The refrigerant temperature at the outlet of the compressor decreases as the bypass rate increases. When the bypass rate is 8.2%, the refrigerant temperature at the outlet of the compressor decreases $2.8^{\circ}C$ while the cooling capacity and EER are the same as the conventional A/C unit.

Shape Optimization of an Air-conditioner Compressor Mounting Bracket (차량용 에어컨 컴프레서 브라켓의 형상최적화)

  • 제형호;김찬묵;강영규;이두호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.389-394
    • /
    • 2003
  • In this paper, a shape optimization technique is applied to design of an air-conditioner mounting bracket. The mounting bracket is a structural component of an engine, on which bolts attach an air-conditioner compressor. The air-conditioner mounting bracket has a large portion of weight among the engine components. To reduce weight of the bracket, the shape is optimized using a finite element software. The compressor assembly, composed of a compressor and a bracket is modeled using finite elements. An objective function for the shape optimization of the bracket is the weight of the bracket. Two design constraints on the bracket are the first resonant frequency of the compressor assembly and the fatigue life of the bracket. The design variables are the shape of the bracket including thickness profiles of the front and back surfaces of the bracket, radius of outer bolt-holes, and side edge profiles. The coordinates of the FE nodes control the shape parameters. Optimal shapes of the bracket are obtained by using SOL200 of MSC/NASTRAN.

  • PDF