• 제목/요약/키워드: Air Change Rate

검색결과 765건 처리시간 0.03초

연료 및 공기 노즐 위치와 공기 유량 변화에 따른 MILD 연소 특성에 관한 해석적 연구 (A Numerical Study of the Combustion Characteristics in a MILD Combustor with the Change of the Fuel and Air Nozzle Position and Air Mass Flow Rate)

  • 김태권;심성훈;장혁상;하지수
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.325-331
    • /
    • 2011
  • 연소과정 중에 발생하는 질소산화물을 저감하는 기술인 MILD 연소에 대하여 연료노즐과 공기노즐의 위치와 공기유량을 변화하면서 나타나는 연소특성을 수치해석을 통하여 연구하였다. 본 연구의 MILD 연소로는 연료노즐과 공기 노즐 사이에 연소배기가스의 배출구가 있는 연소로를 이용하였다. 공기노즐은 8개, 연료노즐은 4개를 사용하였다. 연료노즐이 연소로 중앙 부근에 위치한 연소로의 경우에 공기유량이 적을 때는 연소반응대가 연료노즐에서부터 연소로 벽면으로 치우치게 되지만 공기유량이 커지면 연소반응대가 연료노즐 측에서 시작하여 연료노즐 상부로 형성된다. 공기노즐이 연소로 중앙부분에 위치한 경우에 공기유량이 적을 때는 연소반응대가 공기노즐 부근에서 시작하여 연소로 벽면으로 치우치지만 공기유량이 증가하면 연소반응대가 연료노즐 측으로 옮겨가게 된다. 두 가지 경우 모두 공기유량이 증가하면 연소반응대에서 최대온도가 증가하고 따라서 배기가스에서의 NOx 농도가 증가한다. 두 가지 노즐 위치에서의 NOx 생성을 비교해 보면 공기노즐이 연소로 중앙에 위치한 경우가 연료노즐이 연소로 중앙에 위치한 경우보다 NOx 농도가 현저히 적음을 알 수 있었다. 본 연구의 결과로부터 NOx 저감과 연료의 미연가스 배출을 감안할 때 공기노즐이 연소로 중앙에 위치하고 이론공기량에 해당하는 공기량을 분출할 때 NOx 생성에 가장 효과적임을 알 수 있었다.

주요 항공사별 여객의 변동률 및 방향성 연구 (A Study on the Rate of Change and Direction of Passengers by Major Airlines)

  • 최수호;최정일
    • 산업진흥연구
    • /
    • 제9권2호
    • /
    • pp.13-22
    • /
    • 2024
  • 본 연구 목적은 주요 항공사별 여객의 동향과 변동률을 도출하고 방향성과 동조화현상을 파악하는데 있다. 통계청 국가통계포럼에서 항공사별 자료를 수집하고 2011년 1월부터 2023년 11월까지 총 155개 월간자료를 활용하였다. 국내 대형항공사인 대한항공과 아시아나항공, 저비용항공사인 제주항공, 진에어, 티웨이 그리고 외국항공사를 대상으로 변동률을 산출하였다. 분석결과, 상관관계분석은 한국 총 여객에 대해 아시아나, 대한항공, 제주항공, 티웨이, 진에어, 외항사 순으로 높게 나타났다. 상승률은 티웨이, 진에어, 제주항공, 외항사, 아시아나, 대한항공 순으로 높게 나타났다. Scatter 분석에서 한국 총 여객에 대해 아시아나와 대한항공이 매우 강한 동조화현상을 보여주었고, 제주항공, 티웨이, 진에어, 외항사은 일정 수준 유사한 방향성을 보여주었다. Box-Box Plot 분석에서, 각 항공사는 코로나 19 발생으로 일시적인 급등락현상이 다수 발생하였던 것으로 보였다. 저비용항공사의 출현으로 승객 입장에서는 선택의 폭이 넓어지면서 서비스에 대한 기대감이 커질 것이고 그럴수록 항공사 간 경쟁이 높아질 것으로 보여 기업 발전을 위해 이를 만족시킬 수 있는 환경개선이 뒤따라야 할 것이다.

탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향 (Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia)

  • 김윤아;최정;손석우
    • 대기
    • /
    • 제33권5호
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

포접화합물의 냉각특성에 대한 첨가제의 영향 (The Effects of Additives on the Cooling Characteristic of a Clathrate Compound)

  • 김진흥;정낙규;김석현;김창오
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.125-130
    • /
    • 2005
  • This study was peformed to investigate the phase change temperature, the supercooling, the maintenance time of liquid phase and the change rate of volume of TMA 30 $wt\% clathrate compound with additives. TMA 30 $wt\% clathrate compound with additive was cooled at heat source temperature of $-6^{circ}C$. The additives are ethylene glycol and chloroform. Their concentration are 0.1$wt\% respectively. The experimental results showed that the phase change temperature was not affected by additives and this was average $5.3^{circ}C$. Also the supercooling and the maintenance time of liquid phase were decreased by additives. Especially, the average value of supercooling showed by $8.8^{circ}C$ and the maintenance time of liquid phase was by 19 minutes in the case of chloroform 0.1$wt\%. Additionally, the average change rate of volume showed by $1.26{\~}1.31\%$ according to additives and the volume was decreased by the phase change from liquid to solid.

복합 냉풍 건조기 개발 (Development of the mixed desiccant cooling dryer)

  • 최현웅;김영일;박승태;유경록
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.242-247
    • /
    • 2009
  • The present study has been conducted to reduce the cold air drying rate. According to the cold air drying method, the quality-excellent product could be made and there would be little change of color, taste and smell. As compared with the hot air drying, the cold air drying equipment has the superior dehumidification in a constant drying zone. However, in a falling drying zone that equipment is not energy-efficient because the drying period could be longer by the dehumidificated.

  • PDF

A Study on the Measurement of Respiratory Rate Using a Respirator Equipped with an Air Pressure Sensor

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.240-246
    • /
    • 2022
  • In order to measure the respiratory rate, one of the major vital signs, many devices have been developed and related studies have been conducted. In particular, as the number of wearers of respirators increases in the COVID-19 pandemic situation, studies have been conducted to measure the respiratory rate of the wearer by attaching an electronic sensor to the respirator, but most of them are cases in which an air flow sensor or a microphone sensor is used. In this study, we design and develop a system that measures the respiratory rate of the wearer using an air pressure sensor in a respirator. Air pressure sensors are inexpensive and consume less power than the other sensors. In addition, since the amount of data required for calculation is small and the algorithm is simple, it is suitable for small-scale and low-power processing devices such as Arduino. We developed an algorithm to measure the respiratory rate of a respirator wearer by analysing air pressure change patterns. In addition, variables that can affect air pressure changes were selected, and experimental scenarios were designed according to the variables. According to the designed scenario, we collected air pressure data while the respirator wearer was breathing. The performance of the developed system was evaluated using the collected data.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

Von-Kármán 회전 유동 하에서의 물의 결빙 (Freezing of Water in Von-Kármán Swirling Flow)

  • 유주식
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.413-422
    • /
    • 1996
  • Freezing of water in von-$K{\acute{a}}rm{\acute{a}}n$ swirling flow is considered. The transient behavior of the temperature distribution in both solid and liquid phases and freezing rate are determined. The fluid flow induced by the rotation of solid strongly inhibits the freezing process. The thickness of frozen layer is inversely proportional to the square root of the angular velocity of solid. As the angular velocity or initial liquid temperature becomes larger, the freezing process is more strongly inhibited by the fluid flow. When phase change is present, the transient heat transfer rate is greater than the case with no phase change.

  • PDF

수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구 (Melting of Ice Inside a Horizontal Cylinder under the Volume Change)

  • 조남철;김동춘;이채탈;임장순
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

에어커튼형 레인지후드의 슬롯 토출 각도 변화와 배기 효율 (Effect of Slot Discharge-Angle Change on Exhaust Efficiency of Range Hood System with Air Curtain)

  • 성순경
    • 설비공학논문집
    • /
    • 제27권9호
    • /
    • pp.468-474
    • /
    • 2015
  • When oil is used for cooking in detached or apartment houses, large amounts of oil-mist, smoke, and particulate substances are generated and dispersed into the indoor-air environment. These pollutants diffuse into the surroundings and spread their odor while rising fast at a high temperature due to the heat energy from the gas range. Although the exhaust gas is discharged from the exhaust hood, which is installed on the top of a gas range to remove the diffuse pollutants, the exhaust conditions can vary greatly because they depend on the shape of the exhaust hood and the discharge rate. In this paper, the air that is required for the gas-exhaustion process is supplied by an air curtain that surrounds the kitchen hood, and the pollutant-capturing efficiency varies depending on the angle of the discharge grills; the pollutant-capturing efficiency was studied using a numerical-analysis method. The results indicate that the pollutant-capturing efficiency is not significantly changed by a change of the discharge-grill angle at a low air-discharge rate; however, at a high air-discharge rate, the efficiency value increases with an increase of the discharge-grill angle, whereby the best value occurs at 30 degrees and the efficiency decreases above this angle. Below 30 degrees, the effect of the discharge rate on the capturing efficiency is more than that of the discharge-grill angle.