• Title/Summary/Keyword: Air Bearing Slider

Search Result 58, Processing Time 0.022 seconds

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

Integrated Optimal Design for Suspension to Improve Load/unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim Ki-Hoon;Son Suk-Ho;Park Kyoung-Su;Yoon Sang-Joon;Park No-Cheol;Yang Hyun-Seok;Choi Dong-Hoon;Park Young-pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.204-209
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology far developing the small form factor hard disk drive. The main object of L/UL is no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Calibration of Laser Scribe Force Using Finite Element Method (유한요소법을 이용한 레이저 화선력의 보정)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1319-1324
    • /
    • 2007
  • Accurately controlling the shape of the read/write head structure is critical in the performance of a modem hard disk drive. The sliders investigated are composed of alumina and titanium carbide(AITiC) and act as an air bearing when passing over the disks. Controlling the curvature of the slider is of primary importance. A laser scribing system that produces curvature by inducing residual stress into the slider can be utilized. Predicting the curvature created by a pattern of scribes is of great importance to increase the control over the sliders' shape. The force system that produces stresses similar to the laser scribing is applied to the finite element analysis model. The curvatures created by the force system are calibrated to experimental measurements.

  • PDF

Optimum Design of Optical Flying Head Using EMDIOS (EMDIOS를 이용한 Optical Flying Head의 형상 최적설계)

  • Choi Dong-Hoon;Yoon Sang-Joon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • This study proposes a design methodology to determine the optimum configurations of the optical flying head (OFH) for near-field recording systems. Since the OFH requires stricter static and dynamic characteristics of slider air-bearings within an optical tilt tolerance over the entire recording band, an optimum design to keep the focusing and tracking ability stable is essential. The desired flying characteristics considered in this study are to minimize the variation in flying height between the SIL and the disk from a target value, satisfying the restriction of the minimum flying height, to keep the pitch and roll angles within an optical tilt tolerance, and to ensure a higher air-bearing stiffness. Simulation results demonstrate the effectiveness of the proposed design methodology by showing that the static and dynamic flying characteristics of the optimally designed OFH are enhanced in comparison with those of the initial. The gap between the SIL and the disk can be kept at less than 100 nm even if the optical tilt tolerance of the SIL is considered.

  • PDF

Integrated Optimal Design for Suspension to Improve Load/Unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim, Ki-Hoon;Son, Suk-Ho;Park, Kyoung-Su;Yoon, Sang-Joon;Park, No-Cheol;Yang, Hyun-Seok;Choi, Dong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI (극저부상 HDI 개발을 위한 Head-Disk Impact 연구)

  • 조언정;박노열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

A Study on the Flying Stability of Optical Flying Head on the Plastic Disks (플라스틱 디스크상의 부상형 광헤드의 부상안정성에 관한 연구)

  • Kim, Soo-Kyung;Yoon, Sang-Joon;Choi, Dong-Hoon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.399-402
    • /
    • 2004
  • In the optical drive system, adopting the optical flying-type head (OFH) flying on a removable plastic disk, the flying stability of the small OFH should be carefully considered to ensure the reliability for first surface recording. Additional micro actuators for focus servo are discussed for better interface of optical flying head on thin cover layered plastic disk to eliminate focus error due to the non-uniformity of cover layer thickness and the tolerance of lens assembly. This study gives two simulation results on the flying stability of the OFH. One is the dependence of the flying height and pitch angle variations on the wavelength and amplitude of disk waviness. The other is the flying stability of the slider and suspension system during the dynamic load/unload (U/UL) process.

  • PDF

A study on suspension state matrix to improve load/unload performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬 연구)

  • Lee, Yong-Hyun;Kim, Ki-Hoon;Kim, Seok-Hwan;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Kim, Cheol-Soon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Most hard disk drives that apply the ramp load/unload technology unload the heads at the outer edge of the disk while the disk is rotating. The load/unload includes the benefits as like an increased areal density, a reduced power consumption and an improved shock resistance. A lot of papers investigating the effects of the various load/unload parameters such as a suspension tab, a limiter, a ramp and air-bearing surface designs have been published. However, in previous researches, an effect of the suspension is not considered at each load/unload step. In this paper, we focus that a variation of the state matrix affects the load/unload performance on based on a state matrix that is a stiffness matrix of the suspension. Because the state matrix is related to the suspension at each load/unload step, to change the state matrix means the structural change of the suspension. Therefore, we investigated a range of a pitch static attitude(PSA) and a roll static attitude(RSA) for load/unload performance. We also analyzed an effect of the variation of the state matrix a range of load/unload velocity occurred a slider-disk contact. We determined the variation of the state matrix to improve the load/unload performance through comparison of each factor of state matrix.

  • PDF